Enrico Barausse (IAP)

Compact objects as probes of astrophysics, gravity and fundamental physics

IAP seminar, March 7, 2014

PCIG11-GA-2012-321608

Outline

- Why bother about compact objects? The astrophysicist's vs relativist's view
- What can we learn from EM observations? Example: the spin evolution of supermassive BHs (models vs observations)
- Existing and future GW observations and what we can learn from them Examples: the spins of supermassive BHs (again!), tests of gravity theories (e.g. Lorentz violation)

CO's: the astrophysicist's view

Stellar evolution theory & observations: stellar-mass BHs, neutron stars & white dwarfs exist

Supermassive BHs observed at the center of galaxies and co-evolve with them

Intermediate mass BHs may exist, but no dynamical measurements so far

CO's: the relativist's view

GR tested only in systems with v << c (quasi-static) and/or weak gravitational fields and spacetime curvatures

CO's provide strong fields and curvatures, and close
 CO binaries also have v ~ c

Figure courtesy of N. Yunes, adapted from D. Psaltis Living Rev. Relativity 11 (2008), 9 (see also Yunes & Siemens 2013)

Part I:

What can we learn from EM observations (of massive BHs)

What is a BH?

- A vacuum solution to the field equations that is regular outside an event horizon (located at R ~ GM/c²)
- In GR, characterized by mass M, electric charge Q (= 0 astrophysically) and spin S ...
- In the second second

Astrophysical consequences of BH charges

Mass behaves qualitatively like in Newtonian gravity

Spin affects motion around BHs ("frame dragging" or "spin-orbit coupling"):

ISCO radius

Efficiency of EM emission from thin disks

The Bardeen Petterson effect (see also King, Pringle, Dotti, Volonteri, Perego, Colpi, ...)

Coupling between BH spin S and angular momentum L of misaligned accretion disk + dissipation

- Either aligns or antialigns S and L in ~10⁵ yrs (for MBHs) << accretion timescale</p>
- Antialignment only if disk carries little angular momentum (L < 2S) and is initially counterrotating

L<<25

L>2S

Spin (and mass) evolution depends on environment!

- Accretion & Bardeen Petterson effect depend on local availability of gas
- BHs transfer energy to galaxy through jets (trigged by spin and/or binary motion + magnetic field) and quench star formation (AGN feedback)
 - Surprising due to scales (BHs ~10⁻⁶ pc vs galaxy ~1-100s kpc)
 - Invoked to explain "cosmic downsizing" (most massive galaxies, where strongest AGNs live, have older stars and weaker star formation than smaller galaxies)

simulation by Palenzuela, Lehner and Liebling 2010; cf also Blandford & Znajek (1977)

A semi-analytical galaxy formation model

- Purely numerical simulations impossible due to sheer separation of scales (10⁻⁶ pc to Mpc) and dissipative/nonlinear processes at sub-grid scales
- 7 free parameters calibrated vs observables at z = 0 and z > 0 (e.g. BH luminosity & mass function, stellar/baryonic mass function, SF history, M – σ relation, etc)

	light seeds	heavy seeds
$M_{\rm cloud}$	$3 \times 10^4 M_{\odot}$	$3 \times 10^4 M_{\odot}$
€SN,b	0.4	0.4
€SN,d	0.1	0.1
$f_{ m jet}$	10	10
$A_{\rm res}$	6×10^{-3}	5.75×10^{-3}
$A_{\rm Edd}$	2.2	1
k_{accr}	10^{-3}	10^{-3}

EB (2012); Sesana, EB, Dotti & Rossi (2014)

Calibration: a few examples

EB (2012); Sesana, EB, Dotti & Rossi (2014)

Tuesday, October 28, 14

How about spin evolution?

Observations: growing number of spin measurements using relativistic iron lines

Theory (King, Pringle, Volonteri, Berti, ...): main driver of spin evolution is accretion and not mergers:

Coherent accretion (with fixed L)
 Chaotic accretion (of clouds with randomly oriented L)

Neither works!

Sesana, EB, Dotti & Rossi (2014)

A mix of coherent and chaotic? (Dotti et al 2012)

Accretion by clouds, with mass set by minimum of a "typical" cloud mass ~10⁴ – 10⁵ M_{sun}, and "fragmentation" mass scale set by self gravity

If $J_{cloud} > 2 J_{bh}$, Bardeen Petterson effect aligns BH spin to accretion disk: coherent accretion

~10⁵ yrs (<< accretion timescale)

A mix of coherent and chaotic? (Dotti et al 2012)

If J_{cloud} < 2 J_{bh}, either alignment or anti-alignment can happen, depending on initial orientation of J_{cloud}: spin evolution depends on "isotropy" of J_{cloud} distribution

> ~10⁵ yrs (<< accretion timescale)

"Isotropy" parameter F (= fraction of clouds with J_{bh} · J_{cloud} > 0)

The "isotropy" parameter

Dotti et al (2012)

Randomly oriented clouds (F=1/2)

Sesana, EB, Dotti, Rossi (2014)

Linking accretion to galactic morphology (Sesana, EB, Dotti & Rossi 2014)

I J_{cloud} has "coherent" part (due to rotational velocity v) and "chaotic" part (due to velocity dispersion σ)

 ${\it @}$ Extract from observations of v / σ for

Stars in ellipticals

Bulge/pseudobulge stars in spirals ("bulge" model) OR disk gas in spirals ("disk" model)

Tuesday, October 28, 14

Disk vs Bulge model

Tuesday, October 28, 14

A mixed model

Are there 2 fueling channels (bulge stars + disk gas)?

Can EM observations detect exotic BH hairs?

Color code = $log10(\chi^2_{red})$ allowed region: $\chi^2_{red} < 1$

Continuum fitting of microquasar M33 X-7 (M = 15.65 ± 1.45 M_{sun}, a = 0.84 ± 0.05) with an extra parameter q measuring deviations from Kerr BH's quadrupole (Bambi & EB 2011) Part II: GW observations of compact objects

Indirect evidence of GWs

GWs carry energy and angular momentum away from system binding energy gets more and more negative and binary shrinks

 Indirect detection: Hulse-Taylor binary (and other binaries where one star is a pulsar)

~gsgreenstein/progs/animations/pulsar_beacon;

A direct detection before the end of the decade?

Adv Virgo

Next-generation detectors

eLISA: selected as ESA's L3 mission (exploratory mission 2016; launch 2028-2034)

ET: design study funded; 2020s?

Compact-object binaries as GW sources

Adv LIGO/Virgo: stellar-mass range, i.e. NS-NS up to z ~ 0.1, NS-BH, BH-BH up to z ~ 0.5 - 1

ET: stellar and intermediate mass range,
 i.e. NS-NS, BH-NS, NS-NS at z < 5, IMBH-IMBH, BH-IMBH, NS-IMBH at z < 10 - 15

PTA: supermassive range, i.e. SMBH-SMBH at z < 1</p>

eLISA: supermassive range,
 i.e. SMBH-SMBH at z < 10 - 15; IMBH-SMBH at z < 5,
 BH-SMBH, NS-SMBH at z < 1

GW cosmology/astrophysics

eLISA/ET will measure masses to within 0.1% and spins to within 0.01-0.1

 Clean measurements (no environmental effects; see e.g. EB, Pani & Cardoso 2014)

Will test correlation between BH spins & morphology

GW cosmology/astrophysics

- eLISA will observe modulation in GW amplitude due to spin precession...
- In and will tell "wet" SMBH mergers (spins aligned by Bardeen Petterson effect) from "dry" SMBH mergers (randomly oriented spins)

EB (2012)

EOB waveforms for BH binary with mass ratio 1:6 and spins 0.6 and 0.8, from Pan et al (2013), produced with EOB Hamiltonian of EB & Buonanno (2010,2011)

Tests of fundamental physics with GWs?

An example: test Lorentz invariance in gravity

- Is there an absolute time in gravitational observations?
- To gravitons have non-linear dispersion relation $\omega^2 = \kappa^2 + \alpha \kappa^4 + \dots?$
- Motivation
 - Lorentz invariance tested with high precision in matter sector (e.g. cosmic rays), but not in gravity
 - Lorentz violations ubiquitous in quantum gravity,
 e.g. they allow to construct power-counting
 renormalizable gravity theories (e.g. Horava gravity)

BHs in Lorentz-violating gravity Fractional deviation of ω_{isco} M from GR Color = viable region of coupling constants when stability and solar systems tests are imposed

EB, Jacobson & Sotiriou (2011), EB & Sotiriou (2013)

BHs in Lorentz-violating gravity

 Fractional deviation of b_{photon} /M from GR
 Deviations from GR too small for EM observations, but not for GWs!

EB, Jacobson & Sotiriou (2011), EB & Sotiriou (2013)

Neutron stars in Lorentzviolating gravity

Eling, Jacobson, Miller (2007); Yagi, Blas, EB & Yunes (2013)

Extra GW polarizations in modified gravity

Eardley et al (1973)

- Only ψ_4 (quadrupole) in GR
- Extra polarizations sourced by extra "charges" of NS's and BHs
- May not be observable directly (may be weakly coupled to GW detector)...
- but visible in quadrupolar waves due to backreaction on system (extra modes carry extra energy and angular momentum away from binary)

Constraints on Lorentz violation from binary pulsars

- Combined constraints from almost-circular WD-pulsar and pulsarpulsar systems (PSR J1141-6545, PSR J0348+0432, PSR J0737-3039, PSR J1738+0333)
- Includes observational uncertainties (masses, spins, eccentricity, EOS)

Yagi, Blas, EB & Yunes (2013); Yagi, Blas, Yunes & EB (2013)

A smoking gun for deviations from GR?

- Lorentz violating gravity produces gradual "drift" away from GR during binary's inspiral, due to dipolar emission
- In a class of scalar tensor theories (Damour & Esposito Farese 1996), deviations from GR can be made arbitrarily small during inspiral ...
- ... but deviations from GR behavior can still occur for NS-NS near merger
- Effects observable with Adv LIGO/ Virgo, cannot be mistaken for exotic equation of state

EB, Palenzuela, Ponce, Lehner (2013); Palenzuela, EB, Ponce, Lehner (2013)

Conclusions

- BHs in GR characterized by mass and spin alone ("no hair theorem"); modified gravity theories introduce extra "charges" (e.g. anomalous quadrupole moment)
- NSs/WDs have more degrees of freedom (mass, radius, spin, deformability, equation of state, etc), but modifications of gravity still introduce extra "charges"
- Mass/spin can be measured with EM probes, gives information e.g. about coevolution between galaxy and massive BHs
- GWs can measure mass and spin, but also extra exotic "charges" produced by gravity modifications (e.g. Lorentz violations, scalar-tensor gravity)

Thank you!