Key Issues at the Peak of Galaxy Formation

Avishai Dekel The Hebrew University of Jerusalem

IAP, October 2014

streams – ring – disk

instability

compaction

The most active phase of galaxy formation is during the first few Gyr, z=1-4

Rapid mass assembly: $dM/dt \sim M (1+z)^{2.5}$ \rightarrow at z~2 significant mass growth per orbital time

High gas fraction: ~ 50%

Fast star formation: SFR ~ 100 M_{\odot} yr⁻¹

The processes are intensified compared to z=0 \rightarrow best for studying galaxy formation

Galaxies form in the Cosmic Web

Massive halos (at high-sigma nodes) are fed by relatively thin dense filaments \rightarrow cold streams

Typical halos reside in relatively thick filaments, fed from all directions

the millenium cosmological simulation

Gas streams along the cosmic web

AMR RAMSES Teyssier, AD box 300 kpc res 50 pc z = 5 to 2.5

Streams Feeding a Hi-z Galaxy

Cold Streams Penetrate through Hot Halos

Cold streams Observable: Lyman-alpha Blobs

Detection of Inflow in Lya Emission

Cold Streams & Pancakes in Ly-a Absorption

Fumagalli, Prochaska, Kasen, Dekel, Ceverino, Primack 11

High-z massive galaxies are fed by intense thin streams of smooth gas and frequent mergers (minor, major)

New challenges for galaxy formation

- 1. Galaxy angular momentum from the cosmic web
- 2. Violent disk instability: nonlinear, stimulated
- 3. Quenching by compaction + hot halo

AMR Cosmological Simulations

Cosmological box, RAMSES (Teyssier), resolution 1 kpc

Zoom-in galaxies, ART (Kravtsov, Klypin), RAMSES (Teyssier)

Ceverino, Dekel, Primack:

- 50 pc res. (30 galaxies)
- 25 pc res., lower SFR, w/o rad. fdbk (2x30 galaxies)
- same with stronger RP feedback

DeGraf, Dekel, Gabor, Bournaud:
with BHs and AGN feedback (isolated and cosmological)

Isolated galaxies, resolution 1-10 pc, RAMSES, Bournaud et al.

HUJI: Ceverino, Mandelker, Danovich, Tweed, Zolotov, DeGraf, Inoue Groups of Krumholz+, Burkert+, Bournaud+, Teyssier+, Primack+

Angular Momentum Buildup in High-z Galaxies

Prof. tournesol

Pichon, Pogosyan, Devriendt, Dubois, Colombi+ 2011-2014 Stewart, Bullock+ 2011, 2013 Danovich, Dekel, Hahn, Teyssier, Ceverino, Primack 12, 14

Standard Picture: Spherical Collapse

Rees & Ostriker 77, Silk 77, White & Rees 78, Fall & Efstathiou 80 ...

Proto-halo expansion, turnaround, collapse to a virialized DM halo AM by tidal torques (TTT) prior to maximum expansion: $\lambda_{gas} \sim \lambda_{DM} \sim 0.04$

Spherical gas infall into the halo with the DM Virial shock heating to $T_{\rm v}{\sim}10^6{\rm K}$

 $\lambda_{gas} \sim \lambda_{DM}$

Radiative cooling, cylindrical accretion to disk AM is conserved

Halo AM determines disk size and structure

$$const. = J_{gas} / M_{gas} \sim \lambda R_{vir} V_{vir} \sim R_{disk} V_{disk}$$

$$\frac{R_{\rm disk}}{R_{\rm vir}} \approx \lambda \approx 0.04$$

Bulge by mergers, disk AM is conserved

Is the naïve model of smooth cylindrical infall with disk spin ~ halo spin (SAM) valid at high redshift?

TTT is applied at max-expansion along the streams, after pre-collapse of gas to the filaments' cords

How do the streams join the disk?

A messy interface region: breakup due to shocks, hydro and thermal instabilities, collisions between streams and clumps, heating

An Extended Tilted Ring about the Disk

AM Exchange in the Ring: Torques by Disk

torques by an idealized disk

Torques in the simulated galaxies

1.0

0.8

Extended Ring: HI Column Density

Random lines of sight through (0.1-0.3)R_v

Detection of an Extended Ring?

Bouche+ 2013

z=2.3 Low-Z gas 26 kpc from center V=180 km/s

Crighton+ 2013 z=2.4, 54 kpc Steidel+ 2002, Kacprzak+ 2010

-150

AM Evolution in Disks

Gas-rich -> violent disk instability (VDI) (Noguchi 99; Dekel+ 09) -> torques -> AM outflow and mass inflow (Gammie 01) -> massive spheroids (+BHs) with low AM (Genzel+ 08; Bournaud+11; Dekel+ 13)

Stellar and AGN feedback -> outflows remove low-AM gas from galaxy centers (Maller & Dekel 02; Governato+ 10; Guedes+ 11)

$$\lambda_{gal} < \lambda_{disk} \sim 0.03$$

 λ_{disk} is only slightly smaller than λ_{DM} -> the naïve model is a crude approximation despite the different AM evolution

Conclusions: Angular-Momentum Buildup

High-z massive galaxies form at cosmic-web nodes Fed by ~3 co-planar streams penetrating hot CGM

4 Phases of AM buildup:

- effective tidal torques on pre-collapsed gas streams,
- AM transport through outer halo to inner halo
- spiral-in through an extended tilted rotating ring (DLAS?)
- redistribution within the disk by VDI and feedback

disk spin ~ halo spin (within x2) despite different evolution \rightarrow moderate changes to semi-analytic models

Violent Disk Instability: Nonlinear and Stimulated

Dekel, Sari, Ceverino 2009; Ceverino+ 2010, 2012 Mandelker+ 2014; Moody+ 2014; Forbes+ 2014a,b Dekel, Bournaud, Mandelker+ 2014; Inoue+ 2014

12 15

Local Instability: Forces on Protoclump

Violent Disk Instability (VDI) at High z

 $Q \propto \frac{\sigma \Omega}{2}$

 $R_{\rm clump} \propto$

High gas density \rightarrow disk unstable

Giant clumps and transient features \rightarrow rapid evolution on dynamical time

Toomre 64

Isolated galaxies: Noguchi 99 Immeli+ 04a,b Bournaud, Elmegreen+ 06, 08 Hopkins+ 12 Bournaud+ 13

In cosmology:

Dekel, Sari, Ceverino 09 Agertz et al. 09 Ceverino, AD, Bournaud 10 Ceverino+ 11 Cacciato, AD, Genel 12a,b Genel+ 12 Forbes et al. 12, 13, 14

Self-regulated at Q~1 by torques and inflow \rightarrow turbulent with high $\sigma/V\sim1/5$ Inflow in disk \rightarrow compact bulge and BH Steady state: disk draining and replenishment, bulge ~ disk

Violent Disk Instability (VDI) at High z

Ceverino+ ART-AMR cosmological simulations at 25pc resolution

highly perturbed, clumpy rotating disk: $H/R \sim \sigma/V \sim f_{cold} \sim 0.2$

Violent Disk Instability (VDI) at High z

Ceverino+ ART-AMR cosmological simulations at 25pc resolution

Clumpy Disk in a cosmological steady state

VDI at high z because of high gas density (cosmological density and intense accretion) ~ 50% of the SFGs at z~2

z=4

Dekel, Sari, Ceverino 09;

Ceverino, Dekel, Bournaud 10

Mandelker et al. 14

A typical star-forming galaxy at z=2: clumpy, rotating, extended disk & a bulge

Ha star-forming regions

color-code velocity field

Genzel et al 08

High-z Disks with Giant Clumps

Guo et al. 12 CANDELS

Clumps in VDI Disks

Mandelker+14 Bournaud+14 Dekel, Krumholz 14 Moody+14, Snyder+14

- bulge ~ disk in cosmological steady state
- giant clumps M~10⁸⁻⁹M_☉ R<0.5kpc
- in-situ (gaseous, SFR) and ex-situ (stellar, mergers)
- half the SFR in clumps
- migration to center in ~300 Myr \rightarrow gas+ young stars
- clumps >10⁸ M_{\odot} survive outflows with mass~constant η ~1-2 winds, gas accretion, tidal stripping
- less massive clumps disrupt
- VDI feed gas & stars to the bulge and BH

Expect a gradient of clump mass and age/color

Clump Formation & Migration

Nonlinear instability - stimulated by intense inflows with minor mergers, or by the non-linear clumps themselves

Stimulated Non-linear Instability

Toomre

 $Q \propto \frac{\sigma \Omega}{\Sigma} \approx 1$

Tentative ideas for Q>1 instability:

- Rapid decay of turbulence (Elmegreen) no time for pressure buildup against clump self-gravity
- Irregular rotation counter-rotating streams (Lin) no centrifugal force against clump self-gravity
- Compression modes of turbulence (Bournaud, Renaud) by tidal compression? trigger local collapse
- Clumps generate new clumps

Counter-rotating Streams

Compression Modes of Turbulence: Merger

Conclusions: Stimulated Non-linear VDI

Typical SFGs have perturbed rotating disks undergoing violent disk instability (VDI)

- Massive clumps (> $10^8 M_{\odot}$) survive feedback
- off-center in-situ young clumps <300 Myr, showing age/gas gradient
- older ex-situ clumps

Nonlinear instability

Stimulated by inflow+mergers? Compressive turbulence? Irregular rotation due to counter-rotating streams?

VDI and (minor) mergers actually work in concert

Quenching by Compaction and by a Hot Halo

Dekel & Burkert 2014; Zolotov et al. 2014 Dekel & Birnboim 2003, 2006

Red Nuggets

$z\sim2$ M~10¹¹M_{\odot} R_e~1 kpc low-SFR

Van Dokkum+08,10,14, Damjanov+09, Newman+10, Damjanov+11, Whitaker+12, Bruce+12, ...

Wet Compaction

Dekel & Burkert 2013; Zolotov et al. 2014

Compact stellar spheroid \rightarrow dissipative "wet" inflow to a "blue nugget" by mergers and/or VDI

Inflow is "wet" if $t_{inflow} \leftrightarrow t_{sfr}$

Inflow in self-regulated VDI disk Q~1, evaluated by torques, dynamical friction, clump encounters, energy conservation, ...

$$t_{inflow} \approx f_{cold}^{-2} t_{dyn} \approx (V/\sigma)^2 t_{dyn} \approx 10 t_{dyn}$$

Gammie 01: Dekel, Sari, Ceverino 09
Wetness
parameter
$$w \equiv \frac{t_{sfr}}{t_{inflow}} \approx \varepsilon_{sfr}^{-1} f_{cold}^{-2} > 1$$

$$\varepsilon_{sfr} \leq 0.02 \quad \delta \geq 0.2$$
Expect compact nuggets:
- at high z, where f_{gas} is high
- for low spin λ , where initial R_{gas} is low

Wet Origin of Bulge in Simulations

Zolotov, Dekel, Mandelker, Tweed, DeGraf, Ceverino, Primack 2014

Observations: Blue Nuggets -> Red Nuggets

Barro+ 13 CANDELS z=1-3

Compaction and quenching

dense gas core -> dense stellar core

gas depletion from core, gas ring may form, -> inside-out quenching

> stellar core remains dense from BN to RN

Blue Nugget - Red Nugget naked red nugget

10 z=1.3 z=3.5 z=3.: $\log(\Sigma)[M_{\odot} \, \mathrm{pc}^{-2}]$ -6 -2 n 6 8 10 -8 -6 10-10 -8 -6 -4 -2 0 2 4 6 8 10 -8 -6 -4 -2 0 2 4 6 8 10

a stellar envelope may gradually grow by dry mergers red nugget + envelope = elliptical

Inside-Out Quenching: Slower Quenching in the Outer Disk

Inside-Out Quenching

Tacchella+ 2014

profiles of sSFR (=SFR/ M_{star}) at z~2 galaxies

Stellar Component at z=2.3, edge-on

Ceverino+ 2014

"line width" evolution in simulated galaxies

The Trigger of wet Compaction?

- VDI-driven inflow
- Mergers
- tidal compression
- Counter-rotating streams

Blue Nuggets by Wet Inflow: Low Spin

Simulations confirm model predictions Dekel, Burkert 14; Zolotov+ 14

Diffuse SFG -> "Blue" Nuggets -> Red Nuggets

Hesitatnt vs. Decisive Quenching

low mass, low z

high mass, high z

Mass and Central Density at Quenching

Cold Streams in Big Galaxies at High z 1014 all hot cold filaments $\begin{array}{c} \textbf{M}_{\text{vir}} \\ [\textbf{M}_{\circ}] \end{array}$ in hot medium 1012 M_{shock}~M* M_{shock}>>M* M_{shock} all cold 1010 M* Dekel & 3 0 1 4 5 2 Birnboim 06 redshift z

Two Quenching Mechanisms: Bulge & Halo

Compact gaseous bulge -> gas removal by high SFR, outflow, AGN, Q-quenching

In halos > 10¹² M_☉ -> long-term shutdown of gas supply by virial shock heating

Compact bulge and halo quenching

But each can quench by itself

The Quenching Mechanism

Wet compaction triggered by streams/mergers/VDI in low-spin galaxies: inflow > SFR+outflow

High SFR and no gas supply to the center: inflow \langle SFR+outflow \rightarrow quenching attempt

- disk has shrunk \rightarrow no immediate gas supply
- massive bulge suppresses VDI-driven inflow
- AGN outflow

If halo is massive (hot) \rightarrow no further gas supply \rightarrow long-term quenching

If halo is less massive \rightarrow gas supply to a new disk \rightarrow new compaction and SFR ... until the halo is massive (hot)

Role of AGN Feedback in Quenching?

Gradients Across the Main Sequence

Genzel+ 2014 z=0-2.5

 $t_{dep} = M_{gas} / SFR$

 $f_{gs} = M_{gas} / M_{stars}$

Conclusions: Quenching

A characteristic sequence of events at high z in most galaxies:

- wet compaction by mergers and VDI to compact SFGs ("blue" nuggets) rotating flattened spheroids with high dispersion, above the main-sequence, short depletion time, high gas fraction
- high SFR+AGN, outflows, massive self-gravitating bulge → fast quenching inside-out to compact spheroids (red nuggets) +gas rings
- long-term quenching by hot massive halo
- Quenching downsizing:

massive galaxies quench earlier, efficiently, at higher central densities less massive galaxies : hesitant quenching till halo shutdown

Conclusions

High-z massive galaxies at cosmic-web nodes Fed by ~3 co-planar streams penetrating hot CGM Angular-momentum:

- effective tidal torques on gas streams, AM transport to inner halo
- spiral-in through an extended rotating tilted ring (DLAS?)
- disk spin ≤ halo spin

Typical SFGs have perturbed rotating disks at violent instability (VDI)

- Massive clumps (>10 $^8M_{\odot}$) survive feedback
- off-center in-situ young clumps <300 Myr, showing age/gas gradient
- older ex-situ clumps

Nonlinear instability driven by inflow+mergers. Compressive turbulence?

A characteristic sequence of events:

- wet compaction by mergers and VDI into compact SFGs (blue nuggets)
- high SFR+AGN, outflows, massive self-gravitating bulge
 - -> fast quenching to compact ellipticals (red nuggets) +gas rings (?)
- long-term quenching by hot massive halo -> downsizing of quenching

Conclusions

High-z massive galaxies at cosmic-web nodes Fed by ~3 co-planar streams penetrating hot CGM Angular-momentum:

- effective tidal torques on gas streams, AM transport to inner halo
- spiral-in through an extended rotating tilted ring (DLAS?)
- disk spin ~ halo spin, despite different history

Typical SFGs have perturbed rotating disks at violent instability (VDI) - Massive clumps (> $10^8 M_{\odot}$) survive feedback

- in-situ young clumps showing age gradient. Older ex-situ clumps Stimulated nonlinear instability, by inflow+mergers.

compressive turbulence? Compressive tides? counter-rotating streams?

A characteristic sequence of events:

- wet compaction by mergers and VDI into compact SFGs (blue nuggets)

- high SFR+AGN, outflows, massive self-gravitating bulge
 - -> fast quenching to compact ellipticals (red nuggets) +gas rings (?)
- long-term quenching by hot massive halo -> downsizing of quenching

The High-z "Hubble" Sequence

