Black Hole Spin and the Innermost Environs of AGN

Laura Brenneman Smithsonian Astrophysical Observatory IAP Seminar February 6, 2015

Outline

- Intro: why we care about spin in AGN
- Methods: how we measure spin
- Caveats and case studies
- The SMBH spin distribution so far and its implications and biases
- Future directions

The Importance of SMBH Spin

- Probe of strong gravity regime.
- Indicator of recent gas accretion vs. merger history of supermassive BHs.
- Thought to play a role in jet production and outflows in all BHs, seeding the ISM/IGM with matter and energy, possibly regulating galaxy growth and evolution.

How Can We Measure BH Spin?

- Thermal Continuum Fitting
 - X-ray Spectra (XRBs, some AGN attempts)
- Inner Disk Reflection Modeling
 - X-ray Spectra (both XRBs and AGN)
- Quasi-periodic Oscillations**
 - X-ray Timing (both XRBs and AGN, only one seen in AGN so far)
- Fe K Reverberation Lags, Orbiting Disk Hot Spots**
 - X-ray Timing and Spectra (easier in AGN)
- Polarization Degree & Angle vs. Energy**
 - X-ray Spectra, polarimetry (easier for XRBs)
- Imaging the Inner Disk and Event Horizon**
 - **≤mm-VLBI Imaging** (AGN only: must be large, e.g., Sgr A*, M87)

How Can We Measure BH Spin?

- Thermal Continuum Fitting
 - X-ray Spectra (XRBs, some AGN attempts)
- Inner Disk Reflection Modeling
 - X-ray Spectra (both XRBs and AGN)
- Quasi-periodic Oscillations**
 - X-ray Timing (both XRBs and AGN, only one seen in AGN so far)
- Fe K Reverberation Lags, Orbiting Disk Hot Spots**
 - X-ray Timing and Spectra (easier in AGN)
- Polarization Degree & Angle vs. Energy**
 - X-ray Spectra, polarimetry (easier for XRBs)
- Imaging the Inner Disk and Event Horizon**
 - **≤mm-VLBI Imaging** (AGN only: must be large, e.g., Sgr A*, M87)

Modeling the Reflection Spectrum

 Relativistic electrons in corona Compton scatter thermal photons (UV) from the accretion disk, producing power-law continuum spectrum in X-rays.

• Some X-ray continuum photons are scattered back down onto the inner disk ("reflected").

• Fluorescent lines are produced when a "cold," optically thick disk is irradiated by X-ray continuum photons, exciting a series of fluorescent emission lines.

• The high energy, abundance and fluorescent yield of iron enable visibility above the power-law continuum, making it a better diagnostic feature than lines of other elements.

Reynolds & Nowak (2003)

KERRDISK or RELLINE model (Brenneman & Reynolds 2006; Dauser+ 2010)

KERRDISK or RELLINE model (Brenneman & Reynolds 2006; Dauser+ 2010)

KERRDISK or RELLINE model (Brenneman & Reynolds 2006; Dauser+ 2010)

KERRDISK or RELLINE model (Brenneman & Reynolds 2006; Dauser+ 2010)

KERRDISK or RELLINE model (Brenneman & Reynolds 2006; Dauser+ 2010)

KERRDISK or RELLINE model (Brenneman & Reynolds 2006; Dauser+ 2010)

Dauser+ (2010)

Effect of Spin on Reflection Features

SMBH Spins in AGN

- Current sample size: ~30-40 SMBHs in bright AGN with broad Fe Kα lines (Miller+ 2007, Nandra+ 2007, de La Calle Pérez+ 2010, Reynolds 2013, Brenneman 2013).
 - Out of 10¹¹⁻¹² estimated SMBHs in the accessible universe.
 - Must have high line EW, high X-ray s/n (≥200,000 photons from 2-10 keV), and line must be <u>relativistically</u> broad with r_{in} ≤ 9 r_g. Not all type 1 AGN have such features.
- Technique used: Inner Disk Reflection: KERRCONV, RELCONV or KYCONV × REFLIONX or XILLVER
 Brenneman & Reynolds (2006) Dovčiak (2004) García (2013)
 Dauser+ (2013) Ross & Fabian (2005)

<u>CAVEATS</u>: complex absorption, soft excess, coronal unknowns disk truncation radius disk ionization, density, Fe abundance disk irradiation profile

Disentangling Coronal Emission, Absorption, and Reflection

Prograde Rotation Model

Foreground Obscuration Model

MCG—6-30-15: Spectral Complexity

2006 Suzaku ~330 ks Observation

Spectral Complexity

Spectral components with continuum power-law modeled out

Time-averaged Spectra

- Residuals to a power-law are qualitatively similar to those seen in most previous epochs, as is overall flux state ($F_{2-10} = 4e-11 \text{ ergs/cm}^2/\text{s}$).
- Average broad Fe Kα Line EW = 312 ± 183 eV in 2013 vs. 305 ± 20 eV in 2006.

Temporal Variability

Marinucci+ 2014

Spectral Variability

Time-resolved Spectral Fitting

Marinucci+ 2014

Spin Constraint

NGC 1365: reflection and variable complex absorption

Ratio

Spectral Variability

Walton+ 2014

4 XMM/NuSTAR ~120 ks observations

Constraining Relativistic Reflection

Walton+ 2014

NGC 4151: Variable Absorption and Nature of the Corona

Strong evidence for relativistic reflection

- X-ray spectroscopy has indicated the presence and absence of relativistic reflection (Nandra+2007; Schurch+2003).
- Fe K-reverberation measurements have revealed relativistic reflection in this source (Zoghbi+2012; Cackett+2014).

Strong evidence for variable absorption

 Complex absorption structure has shown N_H variability on two-day timescales (Puccetti+ 2007).

Time-Averaged Spectrum w/o PLC

Keck+ (2015, submitted)

Evidence for Relativistic Reflection

- Accounting for the prominent AGN features reveals Fe XXV and XXVI absorption lines and evidence for relativistic reflection from the inner accretion disk.
- Also evidence for both distant and inner disk reflection.

Model 1: inner disk reflection model

Keck+ (2015, submitted)

Model 1: inner disk reflection model

Keck+ (2015, submitted)

Model 2: absorption-dominated model

Keck+ (2015, submitted)

Time-Resolved Analysis

Model 1: inner disk reflection model

- Time-resolved analysis reveals that change in cold N_H and PLC flux dominate variability.
- Anti-correlation between PLC slope and flux of IDR seen, as expected for the light-bending model.

Keck+ (2015, submitted)
Model 2: absorption-dominated model

Keck+ (2015, submitted)

- Change in covering fraction of partial-covering absorber dominates variability.
- Cut-off power-law shows significant variability, though this seems unphysically anti-correlated with that of the partial-coverer.

Absorption Variability

- ~4 hour crossing time of absorber from the light curve suggests location of eclipsing cloud at a distance d<15000 r_g following the same methods of Puccetti+ (2007). This firmly rules out the absorber at the location of a parsec-scale torus (1 pc ~ 5×10⁵ r_g).
- In absorption-dominated model (no inner disk reflection), we see a strong and unphysical anticorrelation between F_{PLC} and N_H of the cold, partialcovering absorber. This favors the reflection+absorption model on physical grounds.
- Unlike NGC 1365, pairs thick (N_H >10²³ cm⁻²), variable absorbing column with <u>modest</u> inner disk reflection signatures, which makes spin constraints more challenging.

Implications for Coronal Properties

- Reflection model (light bending) assumes corona is a point on the spin axis of the BH. Oversimplification: radial and vertical extent? Active regions?
- If it's the base of a jet, plasma may have some extension and/or outflow.
- This is broadly consistent with relative weakness of IDR flux vs. PLC flux in NGC 4151: factor of ~3 lower than is expected for compact corona.
- Self-consistent model (RELXILL) still does not fit as well as phenomenological model (relaxed dependence of emissivity on coronal height). Complex geometry?

NGC 3783: Fe abundance and soft excess

Suzaku/XIS+PIN spectrum ratioed against simple power-law. A global model of this spectrum requires multi-zone ionized absorption, reflection from distant matter, reflection from inner accretion disk, and a scattered component.

Requires high spin (a > 0.90 at 90% CL). This includes all uncertainties associated with ionized absorption, irradiation profile of inner disk, iron abundance, and treatment of PIN background.

Iron Abundance

• Fit drives a > 0.90 (90% conf.), Fe/solar = 2-4 (MCMC)

• Strict assumption of Fe/solar = 1 worsens fit significantly, allows for low spin.

• Supersolar Fe consistent with measurements from BLR in other AGN (e.g., Warner+ 2004, Nagao+ 2006).

• Caveat: Fe abundance and spin clearly correlated!

• More Fe \rightarrow stronger reflection \rightarrow more blurring required to fit data \rightarrow higher spin values.

 Illustrates importance of exploring wide range of modeling assumptions.

Reynolds+ (2012)

What about the Soft X-ray Excess?

Present in majority of AGN that are not totally absorbed
 <2 keV.

 0.5-2 keV range accounts for most of S/N in AGN observations due to higher collecting area at these low energies, so parameterization of this region can highly influence spectral fitting!

- Physical origin of this emission is still a mystery, may differ source-to-source (e.g., Crummy+ 2006, Done+ 2012, Lohfink+ 2013a):
 - Scattered continuum?
 - Comptonization?
 - Thermal disk?
 - Blurred relativistic reflection?
 - Combination? Something else??

Soft Excess Modeling in NGC 3783

Fairall 9: soft excess in a "bare" AGN

2011 Suzaku ~ ks data ratioed against simple power-law. Very "clean" object – no evidence for any intrinsic absorption. Broad iron line is weak but clearly seen to lowenergy side of strong narrow iron line.

Double reflection model can be distinguished from reflection+ Comptonization model with a broad energy range, e.g., XMM+ NuSTAR or Astro-H.

3C120: Measuring spin in RLAGN

VLA (1.66GHz)

Credit: R.C.Walker

The Spin-Jet Paradigm

Spin as an energy source? Spin paradigm for radio-quiet/radio-loud AGN

cts sec⁻¹ [2–10 keV]

Lohfink+ (2013b)

Multi-epoch analysis yields a > 0.95, r_{in} ranging from <2 to 60 r_g (90% CL).

The Jet Cycle

Assumption of ISCO Truncation

3D MHD simulation of a geometrically-thin accretion disk.

Clearly shows transition at the ISCO which will lead to truncation in iron line emission.

Rapid drop in τ , rise in ξ within ISCO.

Reynolds & Fabian (2008)

Systematic Error from Emission ≤ISCO

Reynolds & Fabian (2008)

The Distribution of SMBH spins (so far)

Brenneman (SpringerBrief 2013); Reynolds (2014); Walton+ (2013)

Black Hole Spin and Galaxy Evolution

- Mergers of galaxies (and, eventually, their supermassive BHs) result in a wide spread of spins of the resulting BHs.
- Mergers and chaotic accretion (i.e., random angles) result in low BH spins.
- Mergers and prolonged, prograde accretion result in high BH spins.

Biggest Systematic Uncertainties in SMBH Spin Measurements

- Ability to isolate reflection from absorption, continuum, properly model soft excess (differs for each source; timeresolved spectra are key).
- Degeneracies with Fe abundance (worse for weaker inner disk reflection features; must carefully probe parameter space).
- Jet contamination in RLAGN (multi-wavelength analysis critical to ensure disk is not truncated > ISCO).
- Assumption of no contribution to reflection spectrum from within the ISCO; introduces systematic uncertainties for high spin constraints at ~2%, low spin constraints at 20% or more.

• **Reflection modeling** gives SMBH spin constraints in a sample of AGN, though care must be taken in model fitting, assumptions.

• Wide range of measured spins for AGN, but so far all are consistent with $a \ge 0$, tendency toward high spin values.

• Larger sample size of AGN spins (esp. RLAGN) must be obtained with combination of broad-band X-ray time-resolved spectroscopy, multi-epoch spectroscopy and timing analysis with various instruments to begin understanding spin demographics, AGN structure, relation to jets.

• Great care must be taken when evaluating different models, consideration of systematic uncertainties.

Future Work

- Further self-consistent model fitting using RELXILL (Garcia+ 2014)
 exploration of systematic errors on spin constraints
- Astro-H (2016): higher E.A., better spectral resolution than Suzaku, simultaneous high-energy data superior to NuSTAR.
 - separate absorption from emission
 - probe soft excess more accurately
- ASTROSAT (?): Simultaneous UV & X-ray spectroscopy
 - tighter constraints on disk thermal emission, warm absorption over wider kinematic scale

• Athena/LOFT (~2028): Further large increase in effective area

- probe accretion physics on orbital timescales
- increase sample size of spin measurements by ~10x
- trace individual hotspots in the disk, Fe K reverberation measurements much more robust

Effects of Spin on Spectrum Are Subtle...

Reynolds+ (2012)

NGC 1365 vs. MCG6

In need of consistent analytical approach to the phenomenological modeling!

NGC 1365 vs. MCG6

Walton+ 2014 -> 106.03

Brenneman+ (in prep.)

Ark 120: Alternatives for Modeling the Soft X-ray Excess

 2013 joint Suzaku/NuSTAR ~80 ks observation shows strong soft X-ray excess visible above power-law continuum in another massive, bare Sy1 AGN (Matt+ 2014).

- Well fit with continuum power-law, distant and inner disk reflection, soft excess with OPTXAGNF component (Done+ 2012).
- Hot corona (hard X-rays) is optically-thick and extended here, whereas in the 2009 Suzaku observation it was more compact. The spectrum in the Suzaku observation was significantly steeper, suggesting an optically-thin corona.

Ark 120: Alternatives for Modeling the Soft X-ray Excess

- The 2007 Suzaku ~100 ks spectrum of Ark 120 was well fit with a continuum powerlaw plus distant and inner disk reflection. The latter completely accounted for the observed excess in hard and soft energies.
- The 2013 joint Suzaku/NuSTAR ~80 ks spectrum showed no evidence for inner disk reflection, though it still showed a strong soft-excess.

Accretion Disk Tomography

• X-ray eclipses of the inner disk by BLR clouds cited in NGC 1365 (e.g., Risaliti+ 2011, Brenneman+ 2013) can also differentiate between the reflection and absorption-only spectral modeling interpretations.

• Can verify the existence of relativistic emission features from the inner accretion disk by examining change in morphology of putative Fe K line as the eclipse progresses.

• This type of accretion disk tomography possible for high-contrast eclipses: e.g., factor ~10 increase in column density during high flux state.

Risaliti+ (2011)

Fe Kα Reverberation Mapping

- Time lags in frequency space \rightarrow time-lag spectrum over energy in a given source, probes the location of the emitting regions for relativistically broadened Fe K α .
- *NuSTAR* will allow Fe Kα, Compton hump lags to be measured simultaneously!
- Next generation X-ray telescopes (e.g., *LOFT*) will further improve upon this science.

Yields highest S/N achievable to date over 0.5-79 keV band; ~100x improvement over previous data >10 keV with *NuSTAR*. Allows definitive deconvolution of continuum, reflection, absorption spectral components.

Black Hole Spin and Jet Production

 Blandford & Znajek (1977): rotating black hole + magnetic field from accretion disk = energetic jets of particles along the BH spin axis.

 Magnetic field lines thread disk, get twisted by differential rotation and frame-dragging.

• Results in a powerful outflow, though many specifics are still unknown, including how/why jets launch, dependence on spin, magnetic field, accretion rate.

 Some observational indication of spin correlation with jet power in microquasars... can we extend to AGN?

1) How can we be sure that we are measuring SMBH spins accurately?

- What are sources of systematic error on spin measurements (e.g., intrinsic absorption, presence of a radio jet, modeling of the soft excess, role of emission from within ISCO) (Steiner, Dotti)
- What are the necessary conditions that need to be met to get accurate spin constraints (e.g., energy coverage, spectral resolution, exposure time, source flux/ spectral state) (me)

2) How can we increase our sample size of measured SMBH spins?

- Will Astro-H and Athena help with this? (me
- If not, what requirements would a mission need to have to improve our sample size by 1-2 orders of magnitude? (me)
- What about pushing out to higher redshifts via gravitational lensing? (Dotti, Dubois)

3) What can the current distribution of SMBH spins tell us about how these BHs have grown and evolved?

- Comparisons to theory (Dotti)
- Comparisons to GBHs (Steiner)

4) What is the role of BH spin in jet production?

- How can we figure this out? (Steiner, Dotti, Dubois)
- Does it differ between GBHs and SMBHs? (Steiner)
- Can jet power be used as (at least one component in) a predictive indicator for spin measurements? (Steiner)