

A physicist's approach to city modelling

Marc Barthelemy

CEA, Institut de Physique Théorique, Saclay, France EHESS, Centre d'Analyse et de Mathématiques sociales, Paris, France

marc.barthelemy@ipht.fr
www.quanturb.com

Importance of cities: megacities

Heterogeneous distribution of growth rates

Cities are about concentration

Urbanized area

ONU-HABITAT 2011

IAP | 29.03.2019

ONU 2011

Urbanism: a lot of "theory" .. But many practical problems !

 Social and economical problems (spatial segregation, crime, accessibility, etc.)

Mobility: congestion, pollution, ...

Sustainability of urban structures ?

- We need robust models, and a better understanding of the "physics" of cities

- Build a "science of cities" validated by data

- Loop theory-observation necessary
- "Machine learning": black box, output difficult to interpret...

A new science of cities

Game changer ? Urban data !Different scales (and different processes)

Revisiting Spatial economics: the Fujita-Ogawa model (1982)

A model for the spatial structure of cities: an agent will choose to live in x and work in y such that

$$Z_0(x,y) = W(y) - C_R(x) - G_T(x,y)$$

Home x

is maximum

- W(y) is the wage at y
- $C_R(x)$ is the rent at x
- G_T(x,y) is the generalized transportation
 cost from x to y =monetary cost+V*duration

...and a similar equation for companies (maximum profit)

office

Main result: monocentric configuration stable if

$$\frac{t}{k} \le \alpha$$

- t: transport cost

- $1/\alpha$ interaction distance between firms

• Effect of congestion: larger cost t

• There are many problems with this model:

- Not dynamical: optimization. We want an out-ofequilibrium model
- No congestion (!) We want to include congestion (for car traffic). Only one transport mode – we want to include mode choice
- No empirical test. Extract testable predictions (see the book: Spatial Economics, by Fujita, Krugman, Venables)

- This model is unable to predict the spatial structure of cities in general
- We will "simplify" the problem and discuss two phenomena:
 - (1) the evolution of car traffic with population
 - (2) the number of activity centers....(if time allows)

I. Modeling car traffic in cities

Car traffic: Newman-Kenworthy 1989

- Many problems:
 - Data availability ?
 - Reproductibility ?
 - Interpretation and use ?
 - Theoretical foundation ?

Figure 1. Gasoline use per capita versus population density (1980)

Modeling car traffic in cities

- Theoretical approach with testable predictions?
- Ingredients:
 - Budget optimization: maximize (Fujita & Ogawa) max(7a - W(u) - Cr(x, u))

$$\max(Z_0 = W(y) - C_R(x) - G_T(x, y))$$

- Individuals randomly located across the city
- Monocentric case: same wage at the CBD

$$\max(Z_0) \Rightarrow \min G_T$$

 Minimum computed over the different modes: mass rapid transit (subway) and private car

Modeling car traffic in cities

Generalized cost

Generalized costs: monetary cost+V*time

- C_c Monetary cost: price of the car, insurance, etc...
- V value of time=amount of money willing to pay in order to save one hour of time; increasing with income (typically a fraction of the income).
- Large V => time is the most important
- Small V => money is the most important

Generalized cost: car

 The time to go from x to y separated by d(x,y) is (Bureau of Public Roads function)

$$\tau(x,y) = \frac{d(x,y)}{\overline{v}} \left[1 + \left(\frac{T(x,y)}{C}\right)^{\mu} \right]$$

where:

- \overline{v} is the average free flow velocity
- T(x,y) is the traffic
- C is the capacity of the road system
- µ is an exponent >1 characterizing the sensitivity to congestion
- With congestion time=d/v is not valid anymore !

Generalized cost: car

 The time for a trip of length d, on road of capacity C and free flow velocity v_c, and with traffic T is then

$$\tau(d) = \frac{d}{v_c} \left[1 + \left(\frac{T}{C}\right)^{\mu} \right]$$

• The generalized cost for the car is then

$$G_{car} = C_c + V \frac{d}{v_c} \left(1 + T^{\mu}\right)$$

Generalized cost: MRT (subway)

- We neglect monetary costs (compared to C_c)
- V value of time, for a distance d, trip duration

$$\tau(d) = f + \frac{d}{v_m}$$

- Driving is faster: $v_{\rm c}{>}v_{\rm m}$ (typically 40 vs 30km/h) but more expensive

- f: walking+waiting time

Generalized cost for the MRT

$$G_{MRT} = V\left(f + \frac{d}{v_m}\right)$$

Modeling car traffic in cities

Critical distance and traffic

Writing G_{MRT}=G_{car} gives a critical distance (L~A^{1/2}, A area of the city)

$$d(V,T) = \min\left(L, \frac{\frac{C_c}{V} - f}{\frac{1}{v_m} - \frac{1}{v_c}} \left(1 + \left(\frac{T}{C}\right)^{\mu}\right)\right)$$

If d MRT
If d>d(V,T) => car

 Writing d(V,T*)=L gives the critical maximum traffic T* above which MRT is beneficial in the whole city

$$T^* = CF\left(v_m, v_c, \frac{1}{L}\left(\frac{C_c}{V} - f\right)\right)$$

Evolution equation for the car traffic T

- Population P increases
- Probability p to have access (<1km) to a MRT station

■ For T<T*:

$$\frac{\mathrm{d}T}{\mathrm{d}P} = 1 - p + p \left(1 - \frac{\pi d(V,T)^2}{A} \right)$$

No access to MRT

Access to MRT and in the « car regime »

For T>T* and P>P*:

$$\frac{\mathrm{d}T}{\mathrm{d}P} = 1 - p$$

Verbavatz & Barthelemy, 2019

Modeling car traffic in cities

Evolution equation for the traffic

Results of the model

 For P>P* the only source of car traffic comes from individuals who do not have access to MRT

$$T \approx (1-p)P$$

where p is the proba to have access to MRT

- P* depends on the details of the city and individuals, usually small).
- For most large cities, the traffic is « saturated »: the only car drivers do not have an alternative
- We got the data for 25 cities in the world (bottleneck: p)

Verbavatz & Barthelemy, 2019

Modeling car traffic in cities

Verbavatz & Barthelemy, 2019

CO_2 emissions

CO₂ emissions proportional to the time spent driving

$$Q_{CO_2} \propto \sum_{drivers i} d(x_i) \left[1 + \left(\frac{T}{C}\right)^{\mu} \right]$$
$$\propto g\sqrt{A}(1-p)P[1+\tau]$$

where τ the average delay due to traffic jams (data available:TomTom) • We then obtain

CO_2 emissions in cities

Verbavatz & Barthelemy, 2019

Modelling car traffic in cities

• We assume $Q_{gas} \propto Q_{CO_2}$

From $Q_{gas}/P \approx (1-p)\sqrt{A}(1+\tau)$ we obtain

$$Q_{gas}/P \approx \frac{\sqrt{P}}{\sqrt{\rho}} \approx \frac{1}{\sqrt{\rho}}$$

where $\rho = P/A$ is the average urban density

 We « understand » here the result of Newman and Kenworthy

Discussion

- The model predicts that it is not the density that controls gasoline consumption (and CO₂ emissions due to transport) but:
 - the density of public transport
 - car congestion
 - the area size of the city
- In general increasing the density in order to decrease CO₂ emissions is.. wrong !
 - If P increases (at A fixed)=>Q_{CO2} increases (congestion)
 - We have to decrease A or more realistically increase p or density at MRT stations

This simple model helped us to point to the relevant parameters...

Verbavatz & Barthelemy, 2019

II. Polycentric structure of cities

Polycentric structure: empirical result

• Exponent $\beta \sim 0.5 - 0.6$

The spatial structure of activity in cities

- We have a polycentric structure, evolving with P
- We can count the number H of centers

$$H \sim P^{\beta} \ \beta \approx 0.5 - 0.6$$

Computing β ?

- Mobility is the key: we need to model how individuals choose their home and work place
- Problem largely studied in geography, and in spatial economics: Edge City model (Krugman 1996), Fujita-Ogawa model (1982)
- Revisiting Fujita-Ogawa: predicting the value of β

Spatial economics: the edge city model (Krugman 1996)

The important ingredient is the 'market potential'

$$\Pi(x) = \int K(x-z)\rho(z)dz$$

Describes the spillovers due to the density in zSpecifically

$$K(u) = A(u) - B(u)$$

The average market potential is

$$\overline{\Pi} = \frac{1}{\Omega} \int \Pi(x) \rho(x) \mathrm{d}x$$

Spatial economics: the edge city model (Krugman 1996)

• The equation for the evolution of business density is

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \gamma \left(\Pi(x) - \overline{\Pi} \right)$$

• Linearize around flat situation $ho(x) =
ho_0 + \delta
ho(x)$

$$\delta \rho(k) \sim \mathrm{e}^{\gamma K(k)t}$$

 At least one maximum at k=k*; the number of hotspots is then:

 $H \sim \Omega k_*^2$

- Scaling with the population ?
- Link micromotives-macrobehavior ?

 A model for the spatial structure of cities: an agent will choose to live in x and work in y such that

$$Z_0(x, y) = W(y) - C_R(x) - C_T(x, y)$$

Home x

is maximum

- W(y) is the wage at y
- $C_R(x)$ is the rent at x
- $C_T(x,y)$ is the transportation cost
- Assumptions and simplifications:
 - Assume that home is uniformly distributed (x): find a job !
 - $\hfill\square$ We have now to discuss W(y) and C_T

ffice

Estimating the wage

- The wage results from a large number of interactions: complex quantity !
- In physics (heavy ions) replacing a complex quantity by a random variable is useful and sometimes accurate (Wigner 55) ! (=> theory of random matrices)
- We then choose:

$$W(y) = s\eta(y)$$

where s sets the salary scale and η is a random variable

Note: the disorder is quenched here

Louf, MB, PRL 2013

Generalized cost: car

 The time to go from x to y separated by d(x,y) is (Bureau of Public Roads function)

$$\tau(x,y) = \frac{d(x,y)}{\overline{v}} \left[1 + \left(\frac{T(x,y)}{C}\right)^{\mu} \right]$$

where:

- \overline{v} is the average free flow velocity
- T(x,y) is the traffic
- C is the capacity of the road system
- µ is an exponent >1 characterizing the sensitivity to congestion

• We write

$$C_T(x,y) \propto \tau(x,y)$$

Summary: the model

- Every time step, add a new individual at a random x
- The individual will choose to work in y (among N_c possible centers) such that

$$Z(x,y) = \eta(y) - \frac{d(x,y)}{\ell} \left[1 + \left(\frac{T(x,y)}{C} \right)^{\mu} \right]$$

is maximum

- $\eta(y)$ is the wage at y --> random

- $C_T(x,y)$ is the transportation cost from x to y: depends on the traffic from x to y --> congestion effects

Louf, MB, PRL 2013

Results

 Depending on the values of parameters, we see two types of mobility patterns: Monocentric vs. polycentric

Monocentric

Polycentric

Monocentric-polycentric transition

- Start with one center $\eta_1 > \eta_j$
- All other subcenters have a zero traffic T(j)=0
- The number of individuals P increases, T(1) increases and at a certain point there is another j such that:

$$Z(i,j) > Z(i,1)$$

Or:

$$\eta_j - \frac{d_{ij}}{\ell} > \eta_1 - \frac{d_{i1}}{\ell} \left[1 + \left(\frac{P}{c}\right)^{\mu} \right]$$

Monocentric-polycentric transition

• Critical value for the population: effect of congestion !

$$P > P^* = C \left(\frac{\ell}{\sqrt{A}N_c}\right)^{1/\mu}$$

• C: capacity of the road system sets the scale

• If ℓ is too small, P*<1 and the monocentric regime is never stable

Results: scaling for the number of centers

 We obtain the average population for which a kth subcenter appears is:

$$\overline{P}_k = P^*(k-1)^{\frac{\mu+1}{\mu}}$$

which implies:

$$\left(H \sim \left(\frac{P}{P^*}\right)^{\frac{\mu}{\mu+1}}\right)$$

Sublinear relation !

From US employment data (9000 cities)

$$H \sim P^{0.64} \ (\Rightarrow \mu \simeq 2)$$

'Urban transition: Phase diagram' Number of hotspots H versus population P

Important cause of polycentricity: traffic congestion

Discussion

- We observe a scaling of H with P which can be explained by a simple model integrating congestion
- Polycentrism is the natural response of cities to congestion, but not enough !

P

 10^{6}

 $\delta au \sim P^{1.3}$

 10^{7}

 10^{8}

For large P: Effect of congestion becomes very large
 => large cities based om individual cars are not economically sustainable d

 10^{7}

 10^{5}

10⁴ ∟ 10⁵

Delay due to congestion (US cities) $\downarrow_{L}^{L} \vdash 10^{6}$

Louf, MB (2013, 2014)

Perspectives

- Science needs data ! Availability of data is critical for Science and also for improving our societies
- Parsimonious models translate for us the information hidden in large datasets, and provide guides to explore data, phenomena and to identify critical factors
- Future: modeling of complex systems...
 - Machine learning is useful for practical applications but do not improve so far (!) our knowledge
 - Mathematical modeling assisted by artificial intelligence ?
 - Or is this the end of mathematical modeling ?

http://www.quanturb.com marc.barthelemy@ipht.fr

(Former and current) Students and Postdocs:

Giulia Carra (PhD student) Remi Louf (PhD student) J. Depersin (M2) Alexandre Diet (M2) Valerio Volpati (Postdoc)

Riccardo Gallotti (Postdoc) A. Bourges (M2) R. Morris (Postdoc) Vincent Verbavatz (M2)

Collaborators:

- A. Arenas M. Batty G. Bianconi P. Bordin M. Fosgerau M. Gribaudi P. Jensen M. Kivela Y. Moreno I. Mulalic V. Latora J. Perret JJ. Ramasco S. Rambaldi C. Roth S. Shay E. Strano
- A. Bazzani M. Breuillé J. Le Gallo M. Lenormand JP. Nadal S. Porta MP. Viana
- H. Berestycki
- S. Dobson
- J. Gleeson
- T. Louail
 - V. Nicosia
 - MA. Porter
 - M. San Miguel

Mathematicians, computer scientists (27%) Geographers, urbanists, GIS experts, historian (27%) **Economists (13%)** Physicists (33%)

Thank you for your attention.

Cambridge Univ Press 2017

http://www.quanturb.com
marc.barthelemy@ipht.fr