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Introduction

• Metal absorption lines in quasar spectra give us
information about the history of Universe.

• The spatial distribution of CIV (triply ionized
carbon) absorbers in the Inter Galactic Medium
(IGM) tells us about the effect of feed-back and
star formation.

• IGM clouds with CIV may be the main ingredient
of future galaxies.

• CIV is a doublet outside of Lyman-alpha forest
which is good for automatic detection.

• Here we introduce the method and preliminary
results of our CIV catalog, which will be the
largest one so far.

Overview of our method

• Our team at UCR has developed an automated
technique for detecting damped Lyman-alpha
absorbers[2, 3, 4] which can be used for detecting
other absorption lines including CIV.

• We use a novel tailored Gaussian process to
model quasar spectra that are clear from CIV
absorption line.

• The Gaussian process is trained on a set of
spectra that were assessed for CIV absorption but
no CIV absorption was detected.

• Then, we model a CIV absorption by a Voigt
profile convoluted with a learned absorption-free
spectrum in the previous step.

• Finally, using Bayesian model selection, we
obtain the probability of existing a CIV absorption
in an unseen spectrum.

• With the CIV absorption probabilities, a user can
get a catalog with any level of desired certainly.

• The main advantage is getting the most of
information out of a spectrum, even from the
noisy and low-resolution spectra like the SDSS.

Learning the null model

• Our training set consists of ∼ 26000 SDSS DR7
spectra which were assessed for CIV absorbers
in [1].

• The absorption free model is trained on ∼12000
spectra in [1] with confirmed no CIV absorption.

• We find the flux co-variance matrix that
maximized the likelihood of our data.

Above figure shows the co-variance matrix labeled
by different emission lines.

Testing the line detection

• We trained on 80% of spectra in [1] and hold out
20% of those spectra for validation.

• The upper panel of figure below shows the raw flux
from SDSS and our fitted flux which is a
convolution of a Voigt profile and our learned mean
flux.

• The Lower panel of the figure shows the likelihood
probability for each pair of our estimating
parameters: Column density (N) and redshift (z)

• Our Bayesian approach gives a very high
probability (P(CIV)=1) for this example spectrum
with confirmed CIV in the hold-out sample.

• Our redshift and column density estimations are in
agreement with the measurements in [1] for this
example CIV absorber.

Validating the parameter
estimation

• The figure below demonstrates the difference be-
tween CIV column (N) density and our Maximum
a posteriori estimation for N in the detected CIV
absorbers in our hold-out sample consisting 5200
spectra.
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• Figure below shows the difference between our
redshift estimation and the redshift measurements
in the hold-out sample for CIV absorbers in [1].
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Performance

• We present ROC curve and confusion matrix to
show the performance of our approach.

• Figure above shows the ROC curve for our
validation set having the true labels from [1].

• The confusion matrix for a probability threshold
of 85% for accepting a CIV absorber as a true
detection is shown above. Class 0 is CIV
absorber and class 1 is the absorber free class.

• We believe that we some of our false positives
are real absorbers missed by [1].

Some important considerations

• CIV column density: The difference between
our estimations and the measurements in [1] is
spread around 0 with a little skew, probably
because many N measurements are lower limits
in [1].

• CIV absorption redshift: There is a very good
agreements between our estimations and the
redshift measurements in [1] as in seen by a
narrow and symmetric distribution around 0 for
the redshift differences between us and [1].

• ROC curve: The area under curve (AUC) for the
ROC curve is more than 0.90 which shows a
good performance.

• Confusion matrix:
– Despite a very high true positive rate of 95%,

we have 40% False Positive Rate for the
probability threshold of 85%.

– False positives can be real absorbers missed
by [1] because of their sensitivity limitation.

– Assuming the CIV absorbers are correlated
with Lyα absorption lines, we may incorporate
this information to constrain our posterior
probabilities for CIV absorption.
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