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Point Source detection

® Point Sources are contaminants to the recovery of CMB signal at small scales.

® Future CMB experiments will have a higher angular resolution than Planck.
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Single-frequency Point Source detection methods

Traditional methods are based on filters such the Mexican Hat Wavelet 2 (MHW?2,
Gonzalez-Nuevo, 2006).
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The issue of multifrequency Point Source detection

e Component separation methods are not well suited for the detection of
extragalactic compact sources.

® PS emit with an enormous variety of astrophysical mechanisms.

® PS detection methods can not define a common spectral behaviour for all of the
sources

® The catalogues of extragalactic sources are extracted from CMB maps separately,
one frequency channel at a time.

® A valuable fraction of the information that multiwavelength experiments can offer
is wasted through the extraction of the catalogues.



Simulations
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MultiPoSelDoN

Trained during 500 Epochs with AdaGrad optimizer, Mean Squared Error loss funcion,
Batch Size of 32, Learning Rate of 0.05 & Leaky RelLU in all the layers.

Fine-grained features addition

\J 9 feature maps
576 feature
maps

9 feature maps
- _

First convolutional layer Last deconvolutional layer

Figure 4: Architecture of MultiPoSelDoN



Results - MTXF (Herranz et al. 2009) vs MultiPoSelDoN
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Figure 5: MTXF & MultiPoSelDoN output patches in Jy at 143, 217 and 353 GHz from top to
bottom




Results - MTXF (Herranz et al. 2009) vs MultiPoSelDoN
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Figure 6: MultiPoSelDoN & MTXF Photometry (top), Completeness and % of spurious
sources (bottom) at 143, 217 and 353 GHz from left to right




Results - MultiPoSelDoN vs PoSelDoN (Bonavera et al. 2021)

104 w107
— MultiPoSelDoN e g
s

3 PoselDoN o~ 2081 —— MultiPoSelDoN
> = —— PoSelDoN
G €064

wn S .

S ]

fa) " e |

B g 75

o >

3 3 50

E "

9 3

3 2 5 |

8 5%

& &

£ 04 ‘ |
, ‘ ; ; 102 103
101 102 103 10 )
Flux Densit
Input Flux Density [m]y] ux Density [mjy]
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Conclusions & Future prospects

Conclusions

® Multifrequency approaches based on NNs perform better than single-frequency
ones.

e Multifrequency NNs have better performance than traditional methods.
® |ower computation time, border effects...

Future prospects
® Regions with higher Galactic emission.

e CMB Component separation.
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Thank you for your attention.
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