An hybrid physics-ML framework to model exoplanetary light curves

ML-IAP conference

22nd October 2022

Mario Morvan, PhD Student

University College London – exoplanets group. Centre for Doctoral Training in Data Intensive Science Collaborators: Ingo Waldmann, Nikolaos Nikolaou, Angelos Tsiaras, Gordon Yip

Outline

1. Transit light curves: Data and Challenges

2. Can neural nets denoise light curves?

3. Towards hybrid DL-physics models

Transit light curves

Raw Transit Light Curve

=

Instrumental noise:

Read-out Electron trapping (Spitzer, JWST...) Dark current Intra/inter-pixels variations

Astrophysical noise

Background and foreground light Stellar variability Solar system reflexions Unresolved binaries

.

Planetary signals

Primary transit Secondary transit Phase curves

Detection and characterisation: Towards exoplanet surveys

Detrending Light curves

- Detrending ~ Temporal Denoising
- Processing milestone for detection and characterisation
- Previous techniques either:
 - Either local, linear or non-scalable models
 - Fail to provide a general consensus on how to best detrend LCs

What next?

2. Can neural nets detrend light curves?

Transit Light Curve Detrending (TLCD) LSTM model in a nutshell

Transit parameters
(R _P /R _S , a/R _S , P, i)

1) Trend Prediction using TLCD-LSTM model 2) Trend removal

3) Transit-model Fitting

Autoregressive probabilistic multi-layer LSTM to learn the noise structure. Inspired from DeepAR (Salinas et al. 2017) and BRITS (Cao et al. 2018) models:

- gaussian likelihood loss on next point prediction
- Input is masked during transit
- reinjecting predictions in autoregressive way predict noise during transit
- Applied to Spitzer data successfully

The state and future of time-series deep modelling

Towards global non-linear scalable detrending models?

- DL hegemony in image processing since 2012 (AlexNet)
- DL hegemony in NLP since 2017 (transformers)
- Has DL surpassed traditional methods for Time Series?
 - Mostly yes for forecasting/classifying many Time Series
 - Still lagging behind images and language models
 - Unsupervised and Generative TS modelling still infant

3. Composition of transit physics with DL model

A differentiable transit model

- Objective: embed a transit model in DL framework
- Requirements:
 - Differentiable \rightarrow joint optim
 - Vectorisable and GPU-compatible \rightarrow efficiency
 - Deep-Learning framework \rightarrow convenience

\rightarrow PyLightcurve-torch \bigcirc

Experiment: inverse transit problem

- Data: 2000 synthetic transit light curves with random transit parameters and Gaussian noise
- *Metric*: Mean Squared Error on transit parameter **Rp/Rs**
- Architecture: 1D CNN

Experiment: inverse transit problem

Loss: Regression loss for Model 1 and Regression + Reconstruction for Model 2

- Test performance improved by the use of reconstruction transit loss
- Bonus: use of physics model improve generalisability

Morvan et al 2021

Hybrid DL-transit structures

Morvan et al 2021

Exact VS Approximate Bayesian Inference

Cross-section of the Posterior Distribution

Posterior distributions for a transit inference problem using *PylightCurve-Torch* and *Pyro*

Pros of SVI:

- More efficient and scalable than MCMC
- Optimised along with Neural Nets

Caveats:

- True **posterior** not necessarily captured
- SVI can suffer from **under-dispersion**

Conclusions

- Neural Nets flexible to model instrumental and stellar noise
- Inference: **differentiable transit model** combined w neural nets, loosing exact Bayesian inference but gaining end-to-end
- Future work on design & test of end-to-end hybrid models
- ... Pending progress in Generative Models of Time Series...

...To be continued...

Thank you!

•