Fast Parameter Estimation for Massive Black Hole Binaries with Normalising Flows

Natalia Korsakova
SYRTE/Paris Observatory

Laser
Interferometer

Space
Antenna

The Gravitational Wave Spectrum

TIMELINE

LISA NOISE AND SOURCES

- Massive Black Hole Binaries
- Galactic Binaries
- Extreme Mass Ratio Inspirals - Stellar Origin Black Hole Binaries

MASSIVE BLACK HOLE BINARIES

Signals from MBHB mergers observed by LISA depend on

- assumptions regarding MBH formation,
- the recipes employed for the black hole mass growth via merger and gas accretion.

We consider two main scenarios for black hole formation

- "light seed" scenario ($\left.=10^{2} \mathrm{M} \odot\right)$
remnant of Population III stars formed in low metallicity environment at $z \sim 15-20$
- "heavy seed" scenario ($>=10^{4} \mathrm{M} \odot$)
direct collapse of protogalactic disk

MBHB POPULATION

heavy seed scenario with efficient formation of
black hole seeds in a large fraction of high-redshift haloes
-> hundreds a year

1. seeds are light, and many coalescences do not fall into the LISA band,
2. seeds are massive, but rare
->tens a year

Massive Black Hole Binaries

- 10 to 100 sources / year

MASSIVE BLACK HOLE BINARIES EM COUNTERPARTS

Multiple authors suggest that the electromagnetic counterparts will be observed as a transient during merger or also during inspiral and merger.

Electromagnetic counterparts will occur due to presence of

- matter or
- magnetic fields.

For example:

- Accretion during merger
- Jets produced by the external magnetic fields

[^0]

INFERENCE

We can estimate the posterior probability distribution of the parameters using Bayes' theorem

INFERENCE

The problem is that we have to compute marginal likelihood for the observation:

$$
p(\mathbf{x})=\int p(\mathbf{x}, \mathbf{z}) \mathrm{d} \mathbf{z}
$$

That are the difference way to estimate marginal probability

INFERENCE

It is not possible to perform exact inference for the general problem. We have to introduce some simplifications.

INFERENCE

It is not possible to perform exact inference for the general problem. We have to introduce some simplifications.

We can use approximate inference:

- Sample from the exact posterior: MCMC or Nested sampling (slow)
- Variational Inference: approximate the posterior distribution with a tractable distribution

INFERENCE

It is not possible to perform exact inference for the general problem.
We have to introduce some simplifications.

We can use approximate inference:

- Sample from the exact posterior: MCMC or Nested sampling (slow)
- Variational Inference: approximate the posterior distribution with a tractable distribution

There are some exceptions for the models with some simplifications:

- Gaussian mixture models (Very simplified)
- Invertible models

INVERTIBLE TRANSFORM

The basic idea:

INVERTIBLE TRANSFORM

The basic idea:

1. we have a simple random generator;

$$
z \sim f_{Z}(z)
$$

For example: $z \sim \mathcal{N}(0,1)$

INVERTIBLE TRANSFORM

The basic idea:

1. we have a simple random generator;
2. we want want to transform it to be able to sample from a more complex distribution expression for which we do not know;

$$
z \sim f_{Z}(z)
$$

For example: $z \sim \mathcal{N}(0,1)$

INVERTIBLE TRANSFORM

The basic idea:

1. we have a simple random generator;
2. we want want to transform it to be able to sample from a more complex distribution expression for which we do not know;
3. we pass it through a bijective transformation to produce a more complex variable.

For example: $z \sim \mathcal{N}(0,1)$

CHANGE OF VARIABLE

$$
\begin{aligned}
& f_{Z}(z) \mathrm{d} z=f_{Y}(y) \mathrm{d} y \\
& f_{Y}(y)=f_{Z}(z)\left|\frac{\mathrm{d} z}{\mathrm{~d} y}\right|
\end{aligned}
$$

CHANGE OF VARIABLE

$$
\begin{aligned}
f_{Y}(y) & =\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y) \\
& =\frac{\mathrm{d}}{\mathrm{~d} y} F_{Z}\left(g^{-1}(y)\right)
\end{aligned}
$$

Chain rule

$$
=f_{Z}\left(g^{-1}(y)\right)\left|\frac{\mathrm{d}}{\mathrm{~d} y} g^{-1}(y)\right|
$$

CHANGE OF VARIABLE

$$
\begin{aligned}
f_{Y}(y) & =\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y) \\
& =\frac{\mathrm{d}}{\mathrm{~d} y} F_{Z}\left(g^{-1}(y)\right)
\end{aligned}
$$

Multidimensional case

$$
\begin{aligned}
& \text { Chain rule } \\
& =f_{Z}\left(g^{-1}(y)\right)\left|\frac{\mathrm{d}}{\mathrm{~d} y} g^{-1}(y)\right|
\end{aligned}
$$

$$
f_{Y}(y)=f_{Z}\left(g^{-1}(y)\right)\left|\operatorname{det} \frac{\partial g^{-1}(y)}{\partial y}\right|
$$

CHANGE OF VARIABLE

$$
\log \left[f_{Y}(y)\right]=\log \left[f_{Z}\left(g^{-1}(y)\right)\right]+\log \left[\left|\operatorname{det} \frac{\partial g^{-1}(y)}{\partial y}\right|\right]
$$

CHANGE OF VARIABLE

$$
\log \left[f_{Y}(y)\right]=\log \left[f_{Z}\left(g^{-1}(y)\right)\right]+\log \left[\left|\operatorname{det} \frac{\partial g^{-1}(y)}{\partial y}\right|\right]
$$

CHANGE OF VARIABLE

$$
\log \left[f_{Y}(y)\right]=\log \left[f_{Z}\left(g^{-1}(y)\right)\right]+\log \left[\left|\operatorname{det} \frac{\partial g^{-1}(y)}{\partial y}\right|\right]
$$

1. $g(y)$ has to be a bijection
2. $g(y)$ and $g^{-1}(y)$ have to be differentiable

$$
z \sim f_{Z}(z) \quad g^{-1}(y) \quad y \sim f_{Y}(y)
$$

3. Jacobian determinant has to be tractably inverted

JACOBIAN

$$
J_{g^{-1}} y=\left[\begin{array}{ccc}
\frac{\partial g_{1}^{-1}}{\partial z_{1}} & \cdots & \frac{\partial g_{1}^{-1}}{\partial z_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_{n}^{-1}}{\partial z_{1}} & \cdots & \frac{\partial g_{n}^{-1}}{\partial z_{n}}
\end{array}\right]
$$

The calculation of determinant Jacobian will take $O\left(n^{3}\right)$
We have to find a way to make it faster

SIMPLIFYING JACOBIAN

SIMPLIFYING JACOBIAN

Determinant of triangular matrix is a product of the elements on its diagonal

AFFINE TRANSFORMATIONS

location-scale transformation:

$$
\tau\left(z_{i} ; \mathbf{h}_{i}\right)=\alpha_{i} z_{i}+\beta_{i} \quad \mathbf{h}_{i}=\left\{\alpha_{i}, \beta_{i}\right\}
$$

Invertibility for $\quad \alpha_{i} \neq 0$
log-Jacobian becomes

$$
\log \left|\operatorname{det} J_{g^{-1}}(\mathbf{z})\right|=\sum_{i=1}^{N} \log \left|\alpha_{i}\right|
$$

COUPLING TRANSFORM

Split input into two parts: $z 1$ and $z 2$

Forward propagation

Inverse propagation

REAL NVP

Coupling transform combined with affine transformation:

$$
\begin{aligned}
& y_{1: d}=z_{1: d} \\
& y_{d+1: D}=z_{d+1: D} \cdot \exp \left(s\left(z_{1: s}\right)\right)+t\left(z_{1: d}\right)
\end{aligned}
$$

Jacobian of this transformation

$$
\frac{\partial y}{\partial z}=\left[\begin{array}{cc}
\mathbf{I}_{d} & 0 \\
\frac{\partial y_{d+1: D}}{\partial z_{1: d}} & \operatorname{diag}\left(\exp \left[s\left(z_{1: d}\right)\right]\right)
\end{array}\right]
$$

What is functions t and s ?

PARAMETERISATION WITH THE NN

The architecture can be any:

Neuron

- residual network
- convolutional network

LISA(B) LISA Consontum iss

COMPOSING FLOWS

$\mathbf{z}_{0} \sim f_{Z_{0}}\left(\mathbf{z}_{0}\right)$

Function composition

$$
\left(g_{1} \circ g_{2}\right)^{-1}=g_{1}^{-1} \circ g_{2}^{-1}
$$

Jacobian composition

$$
\operatorname{det}\left(J_{1} \cdot J_{2}\right)=\operatorname{det}\left(J_{1}\right) \cdot \operatorname{det}\left(J_{2}\right)
$$

SPLINE NEURAL FLOW

Replace affine transform
with tractable piecewise function.
For example,
Rational Quadratic Splines

OPTIMISATION

The flow is trained by maximising the total log likelihood of the data with respect to the parameters of the transformation:

$$
\log p(\mathcal{D} \mid \theta)=\sum_{i=1}^{N} \log \left[f_{Y}\left(y_{i} \mid \theta\right)\right]
$$

θ

- parameters of the Neural Network with we use to parameterise our transform

OPTIMISATION

The flow is trained by maximising the total log likelihood of the data with respect to the parameters of the transformation:

$$
\log p(\mathcal{D} \mid \theta)=\sum_{i=1}^{N} \log \left[f_{Y}\left(y_{i} \mid \theta\right)\right]
$$

Use change of variable equation:

$$
\log \left[f_{Y}(y)\right]=\log \left[f_{Z}\left(g^{-1}(y)\right)\right]+\log \left[\left|\operatorname{det} \frac{\partial g^{-1}(y)}{\partial y}\right|\right]
$$

CONDITIONING ON THE WAVEFORM

We do not have access to the samples form the posterior, as in the examples that we have just considered.

But we have access to the samples from the prior and the simulations of the data.

LIKELIHOOD FREE INFERENCE

Samples from a prior of a physical parameter

$$
y \sim f_{Y}(y)
$$

Condition map on the simulated data:

$$
\mathbf{x}=h(\mathbf{y})+\mathbf{n}
$$

Therefore we have access to the joint sample: $\quad p(\mathbf{x}, \mathbf{y})=p(\mathbf{x}) p(\mathbf{x} \mid \mathbf{y})$

WAVEFORM EMBEDDING

- LISA observes signals in low frequency, therefor the waveforms are long.
- Conditioning does not work well with the long waveform, have to find a way to reduce in.
- It can be done, for example, by constructing new orthogonal basis
which maximises variance in the space of the waveforms.
- And using the coefficients of the projection of the waveforms to the new basis.
- We implement it with Singular Value Decomposition.

WAVEFORM EMBEDDING

WAVEFORM EMBEDDING

Decompose a matrix constructed of the waveforms
matrix composed of basis vectors
matrix containing the singular values

WAVEFORM EMBEDDING

Project the waveform onto the reduced basis in the following way:

$$
v_{\alpha \mu}^{\prime}=\frac{1}{\sigma_{\mu}} \sum_{j=1}^{N} h_{\alpha j} u_{\mu j}
$$

LI5A(B) LlySA (8) iss

RESULTS OF THE PARAMETER ESTIMATION

Questions?

[^0]: - ...

