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LISA NOISE AND SOURCES

Image: LISA White paper

- Massive Black Hole Binaries 
- Galactic Binaries 
- Extreme Mass Ratio Inspirals 
-  Stellar Origin Black Hole Binaries 
- …



Signals from MBHB mergers observed by LISA depend on  
    - assumptions regarding MBH formation, 
    - the recipes employed for the black hole mass growth via 
       merger and  
       gas accretion.

We consider two main scenarios for black hole formation 

- “light seed” scenario (≃102M⊙) 
     remnant of Population III stars formed in low metallicity environment at z ~15-20 

- “heavy seed” scenario (>=104M⊙)  
     direct collapse of protogalactic disk

MASSIVE BLACK HOLE BINARIES



MBHB POPULATION

heavy seed scenario with efficient formation of 
black hole seeds in a large fraction of high-redshift haloes 
-> hundreds a year 

1. seeds are light, and many coalescences do not fall into the LISA band, 
2. seeds are massive, but rare 
->tens a year

Massive Black Hole Binaries 
   — 10 to 100 sources / year 





INFERENCE

We can estimate the posterior probability distribution of the parameters using Bayes’ theorem

Likelihood

Prior

Marginal likelihood

p(y|x) = p(x|y)p(y)
p(x)



The problem is that we have to compute marginal likelihood for the observation:

p(x) =

Z
p(x, z)dz

INFERENCE

That are the difference way to estimate marginal probability



It is not possible to perform exact inference for the general problem. 

We have to introduce some simplifications. 
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It is not possible to perform exact inference for the general problem. 

We have to introduce some simplifications. 

We can use approximate inference: 

- Sample from the exact posterior: MCMC or Nested sampling (slow) 

- Variational Inference: approximate the posterior distribution with a tractable distribution 

There are some exceptions for the models with some simplifications: 

- Gaussian mixture models (Very simplified) 

- Invertible models

INFERENCE
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INVERTIBLE TRANSFORM
The basic idea:  

1. we have a simple random generator; 

2. we want want to transform it to be able to sample from a more complex distribution expression for 

which we do not know; 

3. we pass it through a bijective transformation to produce a more complex variable.

y ⇠ fY (y)

For example: 

z ⇠ fZ(z)

z ⇠ N (0, 1)

y = g(z)



CHANGE OF VARIABLE

dy

dz

fZ(z)dz = fY (y)dy

fY (y) = fZ(z)

����
dz

dy

����



CHANGE OF VARIABLE

fY (y) =
d

dy
FY (y)

=
d

dy
FZ(g

�1(y))

= fZ(g
�1(y))

����
d

dy
g�1(y)

����

Chain rule

7



CHANGE OF VARIABLE

fY (y) =
d

dy
FY (y)

=
d

dy
FZ(g

�1(y))

= fZ(g
�1(y))

����
d

dy
g�1(y)

����

Chain rule

Multidimensional case

fY (y) = fZ(g
�1(y))

����det
@g�1(y)

@y

����

g�1(y)
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CHANGE OF VARIABLE

log[fY (y)] = log[fZ(g
�1(y))] + log

����det
@g�1(y)

@y

����

�

g�1(y)z ⇠ fZ(z)
y ⇠ fY (y)
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1.           has to be a bijection

CHANGE OF VARIABLE

log[fY (y)] = log[fZ(g
�1(y))] + log

����det
@g�1(y)

@y

����

�

g�1(y)z ⇠ fZ(z)
y ⇠ fY (y)g(y)

8



1.           has to be a bijection 

2.           and                  have to be differentiable 

3.  Jacobian determinant has to be tractably inverted  

CHANGE OF VARIABLE

log[fY (y)] = log[fZ(g
�1(y))] + log

����det
@g�1(y)

@y

����

�

g�1(y)z ⇠ fZ(z)
y ⇠ fY (y)

g(y)

g(y)

g�1(y)
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JACOBIAN

The calculation of determinant Jacobian will take 

We have to find a way to make it faster

Jg�1y =

2

664

@g�1
1

@z1
. . . @g�1

1
@zn

...
. . .

...
@g�1

n
@z1

. . . @g�1
n

@zn

3

775

O(n3)
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SIMPLIFYING JACOBIAN
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SIMPLIFYING JACOBIAN

Determinant of triangular matrix is a product of the elements on its diagonal
10



AFFINE TRANSFORMATIONS

⌧(zi;hi) = ↵izi + �i hi = {↵i,�i}

location-scale transformation:

Invertibility for ↵i 6= 0

log-Jacobian becomes

log|detJg�1(z)| =
NX

i=1

log|↵i|
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COUPLING TRANSFORM

Split input into two parts:  z1 and z2

y1 y2

z1 z2

=
t

s

x

+

Forward propagation 

y1 y2

z1 z2

=

t

s

/

-

Inverse propagation 12



REAL NVP

y1:d = z1:d
yd+1:D = zd+1:D · exp(s(z1:s)) + t(z1:d)

Coupling transform combined with affine transformation:

@y

@z
=

2

4
Id 0

@yd+1:D

@z1:d
diag(exp[s(z1:d)])

3

5

Jacobian of this transformation

What is functions t and s?13



PARAMETERISATION WITH THE NN

�

 
b+

nX

i=1

wixi

!
= ŷ

x1

x2

xn

...
...

w1

w2

wn

X

b

ŷ

inputs weights bias

non-
linearity

output

Neuron 

The architecture can be any: 
- fully connected  
- residual network 
- convolutional network 
- …
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COMPOSING FLOWS

z0 z1 zkzk�1. . .

z0 ⇠ fZ0(z0)

g1(z0) gk+1(zk)

y

Function composition

Jacobian composition

(g1 � g2)�1 = g�1
1 � g�1

2

det(J1 · J2) = det(J1) · det(J2)
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SPLINE NEURAL FLOW

Replace affine transform 
with tractable piecewise function. 
For example,  
Rational Quadratic Splines 

Conor Durkan et al, Neural Spline Flows17



OPTIMISATION

The flow is trained by maximising the total log likelihood of the data 
with respect to the parameters of the transformation: 

logp(D|✓) =
NX

i=1

log[fY (yi|✓)]

✓ — parameters of the Neural Network with we use  
     to parameterise our transform



OPTIMISATION

log[fY (y)] = log[fZ(g
�1(y))] + log

����det
@g�1(y)

@y

����

�

The flow is trained by maximising the total log likelihood of the data 
with respect to the parameters of the transformation: 

logp(D|✓) =
NX

i=1

log[fY (yi|✓)]

Use change of variable equation:



CONDITIONING ON THE WAVEFORM

We do not have access to the samples form the posterior,  
as in the examples that we have just considered.

But we have access to the samples from the prior and the simulations of the data.



Condition map on the simulated data:

Samples from a prior of a physical parameter

Therefore we have access to the joint sample:

LIKELIHOOD FREE INFERENCE

y ⇠ fY (y)

x = h(y) + n

p(x,y) = p(x)p(x|y)



WAVEFORM EMBEDDING

• LISA observes signals in low frequency, therefor the waveforms are long. 

• Conditioning does not work well with the long waveform, have to find a way to reduce in. 

• It can be done, for example, by constructing new orthogonal basis  

which maximises variance in the space of the waveforms. 

• And using the coefficients of the projection of the waveforms to the new basis. 

• We implement it with Singular Value Decomposition.



WAVEFORM EMBEDDING



WAVEFORM EMBEDDING

Decompose a matrix constructed of the waveforms  

H = V⌃U
T

matrix composed of basis vectors

matrix composed of reconstruction coefficients

matrix containing the singular values



WAVEFORM EMBEDDING

Project the waveform onto the reduced basis in the following way:

v0↵µ =
1

�µ

NX

j=1

h↵juµj



RESULTS OF THE PARAMETER ESTIMATION

PRELIMINARY



Questions?


