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TIMELINE

Mission Mission . Adoption : Implementation : Launch
Consolidation :  Adoption ’ ;
Review Review

last year this year <=2024 8.5 - 9 years

Transfer
and Oberations Extension
Commissioning P (TBD)

2.5 years 4 years 6 years



LISA NOISE AND SOURCES

Massive Black Hole Binaries
Galactic Binaries

Extreme Mass Ratio Inspirals
Stellar Origin Black Hole Binaries

Image: LISA White paper
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MASSIVE BLACK HOLE BINARIES

Signals from MBHB mergers observed by LISA depend on
- assumptions regarding MBH formation,
- the recipes employed for the black hole mass growth via
merger and
gas accretion.

We consider two main scenarios for black hole formation

- “light seed” scenario (=10°MO)
remnant of Population Il stars formed in low metallicity environment at z ~15-20

- “heavy seed” scenario (>=10*"M0)
direct collapse of protogalactic disk
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MBHB POPULATION

neavy seed scenario with efficient formation of
plack hole seeds in a large fraction of high-redshift haloes
-> hundreds a year

1. seeds are light, and many coalescences do not fall into the LISA band,
2. seeds are massive, but rare
->tens a year

Massive Black Hole Binaries
— 10 to 100 sources / year



. =N
Lisats) LISA &7 s
/) ®

CONSORIIUM

MASSIVE BLACK HOLE BINARIES EM COUNTERPARTS

Multiple authors suggest that

the electromagnetic counterparts will be observed 0] — A
as a transient during merger or also during inspiral and :
merger. S 40
&
QL
-
- . 8 20 -
Electromagnetic counterparts will occur =
due to presence of & ) e e ,,,,.nl‘
- matter or ) NN M W ,,,,m' S
- magnetic fields. 3 .,
Y
.‘_é‘
=
For example: 0
- Accretion during merger
X : —60 1
- Jets produced by the external magnetic fields . . I I . ,
2.491 2.492 2.493 2.494 2.495 2.496

time |s] le7



Lisats) LISA e i
N CONSORTIUM : . -

INFERENCE

We can estimate the posterior probability distribution of the parameters using Bayes’ theorem
'Prior
_\p(y) .....
p(y|T) —

.AMarginal likelihood

Likelihood



INFERENCE

The problem is that we have to compute marginal likelihood for the observation:

That are the difference way to estimate marginal probability
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INFERENCE

It is not possible to perform exact inference for the general problem.
We have to introduce some simplifications.
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INFERENCE

It is not possible to perform exact inference for the general problem.
We have to introduce some simplifications.

We can use approximate inference:
- Sample from the exact posterior: MCMC or Nested sampling (slow)
- Variational Inference: approximate the posterior distribution with a tractable distribution
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INFERENCE

It is not possible to perform exact inference for the general problem.
We have to introduce some simplifications.

We can use approximate inference:
Sample from the exact posterior: MCMC or Nested sampling (slow)

- Variational Inference: approximate the posterior distribution with a tractable distribution

There are some exceptions for the models with some simplifications:

Gaussian mixture models (Very simplified)
Invertible models



The basic idea:

INVERTIBLE TRANSFORM

OOOOOOOOOO



"”7’ lisa

/’,_“\ N AH& e
Lisats) LISA  eqq
N CONSORTIUM

INVERTIBLE TRANSFORM

The basic idea:
1. we have a simple random generator;

For example: z ~ AN(0, 1)
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INVERTIBLE TRANSFORM

The basic idea:

1. we have a simple random generator;
2. we want want to transform it to be able to sample from a more complex distribution expression for

which we do not know;

For example: z ~ AN(0, 1)
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INVERTIBLE TRANSFORM

The basic idea:
1. we have a simple random generator;
2. we want want to transform it to be able to sample from a more complex distribution expression for

which we do not know;

3. we pass it through a bijective transformation to produce a more complex variable.

For example: z ~ AN(0, 1)



CHANGE OF VARIABLE




CHANGE OF VARIABLE

d
— d—yFY(?J)
— d%Fz(g_l(y))
Chain rule
—1 d _,
= fz(9" " (y)) 1,7 (y)

OOOOOOOOOO



CHANGE OF VARIABLE

d
. d—yFy(y)
= S F(o7 () fr(v) =
- di/ z\g Y
Chain rule
- T
= fz(9" " (y)) 1,7 (y)
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Multidimensional case
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1. g(y) hasto be a bijection ‘

OOOOOOOOOO




CHANGE OF VARIABLE

log[ fy (v)] =log[fz(9~ " (y))] + log [

1. g(y) hasto be a bijection .
2. 9(y) and g_l(y) have to be differentiable

3. Jacobian determinant has to be tractably inverted

OOOOOOOOOO
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JACOBIAN
89{1 39{1
0z1 0zn
<J§—1y1=: E
6951 ﬁggl
0zq 0zn

The calculation of determinant Jacobian will take O(n?)
We have to find a way to make it faster
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SIMPLIFYING JACOBIAN
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SIMPLIFYING JACOBIAN

Determinant of triangular matrix is a product of the elements on its diagonal



AFFINE TRANSFORMATIONS

location-scale transformation:
T(Zz'; hz) = (25 T 6@ hz — {Oéia ﬁz}
Invertibility for Q; # 0
log-Jacobian becomes

N
log|detJ ,—1(z)| = Zlog|ozz-|
i=1
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COUPLING TRANSFORM

Split input into two parts: z1 and z2

Forward propagation

Inverse propagation
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REAL NVP

Coupling transform combined with affine transformation:

Y1:d = <1:d
Yd+1:D — <2d+1:D - GXP(S(ZLS)) 1 t(Z1:d)

Jacobian of this transformation

oy | ¥ 0

7 _ | | |
0=~ | —5-7  diag(exp[s(z1.a))
<1:d

What is functions t and s?
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PARAMETERISATION WITH THE NN

The architecture can be any:
- fully connected
residual network

0 (b + szmz) = 9 - convolutional network
1=1 _

NOonN-

output

inearity
inputs Weights bias
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COMPOSING FLOWS

91(2o)

Function composition

—1 —1 -1
(91092)"" =91 ©9
Jacobian composition

det(J1 ° JQ) — det(Jl) ' det(Jg)

Gr+1(2Z1)



SPLINE NEURAL FLOW

Replace affine transform

with tractable piecewise function.
For example,

Rational Quadratic Splines

17 Conor Durkan et al, Neural Spline Flows
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The flow is

trained
with respect

to the

logp(D|0) =

9 — parameters of the Neural Network with we use

LISA ')

OPTIMISATION

oy maximising the total log likelihood of the data

narameters of the transformation:

Zlog fy (yil0)]

to parameterise our transform
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OPTIMISATION

The flow is trained by maximising the total log likelihood of the data

with respect to the parameters of the transformation:

logp(D|0) = ZlOg fy (yil0),

Use change of variable equation:

log[fy (y)] = log[fz (g™ (v))] + log [

OOOOOOOOOO
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CONDITIONING ON THE WAVEFORM

We do not have access to the samples form the posterior,
as in the examples that we have just considered.

But we have access to the samples from the prior and the simulations of the data.



Lisa™s) LISA &7 isa
w2 ‘ .

CONSORTIUM

LIKELIHOOD FREE INFERENCE

Samples from a prior of a physical parameter

nyY()

Condition map on the simulated data:

x =Nh(y)+n

Therefore we have access to the joint sample: p(X, 'y) — p(X)p(X‘Y)
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WAVEFORM EMBEDDING

e LISA observes signals in low frequency, therefor the waveforms are long.

e Conditioning does not work well with the long waveform, have to find a way to reduce in.
e |t can be done, for example, by constructing new orthogonal basis

which maximises variance in the space of the waveforms.

* And using the coefficients of the projection of the waveforms to the new basis.

e We implement it with Singular Value Decomposition.
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WAVEFORM EMBEDDING
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WAVEFORM EMBEDDING

Decompose a matrix constructed of the waveforms

H=VXU!' —

/

matrix composed of basis vectors

matrix composed of reconstruction coefficients

matrix containing the singular values
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WAVEFORM EMBEDDING

Project the waveform onto the reduced basis in the following way:

N
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Questions!



