Using a series of ML models for the detection of highredshift Radio Galaxy candidates

Rodrigo Carvajal

+ Institute of Astrophysics and Space Sciences - U. of Lisbon

+ I. Matute, J. Afonso, S. Amarantidis, D. Barbosa (IA - U. Lisbon), P. Cunha, A. Humphrey (IA - U. Porto)

OCTOBER 22, 2021

DEBATING THE POTENTIAL OF ML IN ASTRONOMICAL SURVEYS

Ciências

ULisboa

Radio Galaxies

- + Also known as Radio-Loud Active Galactic Nuclei (RLAGN).
- + AGN with radio emission strong enough to be detected.
- + In general, we focus on highredshift RGs → EoR epoch and AGN evolution.

OCTOBER 22, 2021

DEBATING THE POTENTIAL OF ML IN ASTRONOMICAL SURVEYS Hardcastle & Croston, 2020

Issues with RGs

Table 1. Big Data 3V characteristics in astronomical sky surveys.

Sky Survey	Volume	Velocity	Variety			
SDSS Sloan Digital Sky Survey	$50~\mathrm{TB}$	200 GB per day	images, catalogs, redshits			
GAIA	$100 \ \mathrm{TB}$	40 GB per day	more then 100 parameters			
Pan-STARRS Panoramic Survey Telescope and Rapid Response System	5 PB	5 TB per day	images, catalogs			
LSST Large Synoptic Survey Telescope	60 PB	10 TB per day	images, catalogs			
SKA Square Kilometer Array	$3 \ \mathrm{ZB}$	150 TB per day	images, catalog, redshifts			
tes:	1 1 4 4					

- + High-redshift AGN hard to detect.
- + Redshift determination (SED fit) takes long time.
- + Most detections in optical/NIR. We lack radio observations.
- + Future (and present) radio surveys produce large data volumes.
- + Traditional (radio) AGN detection methods will be inefficient.

Note.

The column Volume refers to raw data produced at the end of the experiment. Values regarding Pan-STARRS, LSST, and SKA surveys refer to expected Volume and Velocity values.

Garofalo et al., 2016

Issues with RGs

OCTOBER 22, 2021

DEBATING THE POTENTIAL OF ML IN ASTRONOMICAL SURVEYS

×

Æ

ഹ്മ

We aim to obtain...

+High-redshift RG candidates +AGN +Radio emission +Redshift

+Series of models +Control over features +Interpretability

Data: HETDEX Spring Field

- + \sim 400 deg² in the northern sky (as covered by LoTSS DR-1).
- + 6,729,647 detections in NIR (CatWISE2020, Marocco+2020).
- + Counterparts in:
 - + Radio (LOFAR, GMRT, VLASS)
 - + IR (AllWISE, 2MASS)
 - + Visible+NIR (Pan-STARRS)
 - + UV (GALEX)
 - + X-ray (XMM-Newton)
- + Cross-match with Million Quasar Catalog (v7.2, Flesch 2021)

Data Preparation

- +Imputation: limiting magnitude (20 bands).
- + Colours and magnitude ratios.
- + Flags: AGN, radio, X-ray.
- +32,365 identified AGN (0.48%)

DFBATI

Models Preparation

+Train (90%) – Validation (10%) +Model stacking.

+Feature selection with Boruta. +Fix unbalance for radio model.

$$\Delta z^{N} = \frac{|z_{\text{true}} - z_{\text{pred}}|}{1 + z_{\text{true}}}$$
$$\text{MCC} = \frac{(\text{TP} \times \text{TN}) - (\text{FP} \times \text{FN})}{\sqrt{(\text{TP} + \text{FP}) \times (\text{TP} + \text{FN}) \times (\text{TN} + \text{FP}) \times (\text{TN} + \text{FN})}}$$

Combining All Predictions

+

DEBATING THE POTENTIAL OF ML IN ASTRONOMICAL SURVEYS

OCTOBER 22, 2021

Combining Predictions

- SDSS Equatorial Strip in the Southern Galactic Cap (92 deg²).
- Equal data collection as with HETDEX (minus LOFAR 150 MHz).
- 369,093 objects in CatWISE2020
- 2,941 objects labelled as AGN.

Thus, we have 266 radio AGN candidates!

DEBATING THE POTENTIAL OF ML IN ASTRONOMICAL SURVEYS

OCTOBER 22, 20/21

										7
	RA_ICRS	DE_ICRS	is_QSO	Label_AGN	radio_detect	Label_radio	z	Pred_Z	Z_score	
180296	19.751310	-0.032450	1	1	0	1	2.750	2.786	0.010	
333924	331.784688	1.023693	1	1	1	1	2.911	2.763	0.038	
80636	24.262678	-0.704125	1	1	0	1	2.502	2.549	0.013	
349091	14.436190	1.138420	1	1	0	1	2.762	2.449	0.083	
326594	334.009676	0.974047	1	1	0	1	2.864	2.221	0.166	
123079	12.557420	-0.412885	1	1	0	1	2.035	2.189	0.051	
330825	349.030179	1.003573	1	1	1	1	2.638	2.109	0.145	
145426	10.847652	-0.264569	1	1	1	1	2.820	2.084	0.193	
261855	333.072000	0.540843	1	1	0	1	2.265	2.024	0.074	
276469	17.476529	0.636962	1	1	0	1	1.975	2.014	0.013	
255854	340.978137	0.501055	1	1	0	1	2.125	1.999	0.040	
279768	340.109204	0.661146	1	1	0	1	2.111	1.967	0.046	1
178119	30.344848	-0.046815	1	1	0	1	1.514	1.956	0.176	/
177225	13.479837	-0.052584	1	1	0	1	1.714	1.907	0.071	
76036	10.291814	-0.736649	1	1	0	1	1.823	1.883	0.021	

Pan-STARRS 1 (y/i/g)

VLASS (3 GHz)

Id: 180296 **Prediction:** Radio-AGN z=2.786

Basic data :

SDSS J011900.32-000156.7 -- Quasar

Other object types:	QSO (2012MNRAS,[MHP2012]), * (Gaia), Q ? (2011AJ)
ICRS coord. (ep=J2000) :	01 19 00.3195546172 -00 01 56.874776256 (Optica
FK4 coord. (ep=B1950 eq=1950)	01 16 26.6265000543 -00 17 42.086509446 [0.158
Gal coord. (ep=J2000) :	137.7938893149207 -62.1061206804555 [0.1582 0.
Proper motions mas/yr :	0.220 0.180 [0.373 0.220 90] A 2018yCat.1345
Radial velocity / Redshift / cz :	V(km/s) 257538 [42] / z(spectroscopic) 2.63177 (Opt) C 2012ApJS20321A
Parallaxes (mas):	0.0443 [0.1785] A 2018yCat.13450G
Fluxes (9) :	G 18.0710 [0.0038] C 2018yCat.13450G
	J 16.931 [0.015] D 2012MNRAS.424.2876M
	H 16.475 [0.031] D 2012MNRAS.424.2876M
	K 16.118 [0.027] D 2012MNRAS.424.2876M
	u (AB) 19.75 [0.03] C 2012ApJS20321A
	g (AB) 18.554 [0.007] B 2012ApJS20321A
	r (AB) 18.233 [0.008] B 2012ApJS20321A
	i (AB) 18.123 [0.008] B 2012ApJS20321A
	z (AB) 18.089 [0.022] C 2012ApJS20321A

WISE (W1)

OCTOBER 22, 2021

We can also extract information from the models themselves!

OCTOBER 22, 2021

DEBATING THE POTENTIAL OF ML IN ASTRONOMICAL SURVEYS

+

Feature Importances

AGN detection

Radio detection

Redshift value

Feature Importances

ASTRONOMICAL SURVEYS

OCTOBER 22, 2021

Shapley Values

- From Game Theory (Shapley, 1953).
- +They show how each feature impacts the final prediction (per source).
- +High Shapley value increase probability of detection or high redshift.
- +Allows analysis of interplay between features.

AGN detection

High

Shapley Values

- From Game Theory (Shapley, 1953).
- +They show how each feature impacts the final prediction (per source).
- +High Shapley value increase probability of detection or high redshift.
- +Allows analysis of interplay between features.

Final Thoughts

+

OCTOBER 22, 2021

Final Toughts

+No need for fully clean data to obtain meaningful results.

+Some degree of transferability with minor changes in dataset.

+Using series of models useful to understand each step.

+ML models can give insight over probably hidden correlations among features (new discoveries?).

Future Steps

+Include uncertainties

+Tackle imbalance (AGN, radio, z)

+Include morphological properties.

Thank you for your attention!

Questions? Comments?

OCTOBER 22, 2021

This work has been supported by the Fundação para a Ciência e a Tecnologia (FCT) through the Fellowship PD/BD/150455/2019 (PhD::SPACE Doctoral Network PD/00040/2012) and POCH/FSE (EC), and through research grants PTDC/FIS-AST/29245/2017, UID/FIS/04434/2019, UIDB/04434/2020 and UIDP/04434/2020.

Using a series of ML models for the detection of highredshift Radio Galaxy candidates

Rodrigo Carvajal

+ Institute of Astrophysics and Space Sciences - U. of Lisbon

+ I. Matute, J. Afonso, S. Amarantidis, D. Barbosa (IA - U. Lisbon), P. Cunha, A. Humphrey (IA - U. Porto)

OCTOBER 22, 2021

DEBATING THE POTENTIAL OF ML IN ASTRONOMICAL SURVEYS

Ciências

ULisboa