IAP 2021 Conference Debating the potential of machine learning in astronomical surveys 19 October 2021

Max-Planck-Institut für Astrophysik

Identifying strong gravitational lenses in current and future large-scale imaging surveys

Raoul Cañameras (MPA Garching)

S. Schuldt, S. Suyu, Y. Shu, S. Taubenberger, T. Meinhardt, L. Leal-Taixé, D. Chao, B. Clément, F. Courbin, K. T. Inoue, A. T. Jaelani, C. Lemon, A. More, K. Rojas, E. Savary

Cosmology with lensing delays

Strongly lensed time-variable sources (quasars, supernovae)

→ Multiple images appear around the foreground lens galaxy at different times

Fig. Illustration of a lensed SN event (credit S. More).

Cosmology with lensing delays

The cosmic expansion rate

Discord between the H_0 measurements from the late-time Universe and early-time Universe \rightarrow *new physics* beyond the current standard \land CDM cosmological model ?

 \rightarrow Independent methods necessary to assess tension

Time-delay cosmography with lensed quasars (H0LiCOW, Suyu et al. 2017) $\rightarrow H_0$ with 2.4% precision in flat \land CDM (Wong et al. 2020, H0LiCOW XIII)

Residual systematic uncertainties ? (TDCOSMO I & IV)

→ Use lensed supernovae to break degeneracies and improve precision on H_0 (Suyu et al. 2020)

HOLISMOKES!

(Highly Optimized Lensing Investigations of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals; Suyu et al. 2020, A&A 644, 162)

https://shsuyu.github.io/HOLISMOKES/site/

- Lensed supernovae with wide image separations are extremely rare → need very wide-field and high-cadence imaging surveys
- Identify all static strong lenses and wait for a SN to explode in the background hosts
- Now with ZTF+PanSTARRS in the North & after 2024 with Rubin LSST in the South
 - → Machine learning pipelines for <u>systematic</u> galaxy-scale lens searches

Sherry Suyu

Stefan Schuldt

Stefan Taubenberger

Yiping Shu

Automated pipelines for wide-field imaging surveys

Binary classification with

- Arcfinder algos (Gavazzi+2014, Avestruz+2019)
- Principal component analysis (Joseph+2014, Paraficz+2016)
- Lens modeling and masking (Sonnenfeld+2018)
- Citizen-science projects (Marshall+2016, Sonnenfeld+2020)
- Or ... supervised deep learning

Classification with convolutional neural networks (CNNs, LeCun+1998)

in CFHTLS (Jacobs+2017), COSMOS HST (Pourrahmani+2018), KiDS (Petrillo+2017; +2019; Li+2020), DES (Jacobs+2019a,b), DECaLS (Huang+2020;+2021) ...

F. Courbin's talk yesterday \rightarrow Searches in DES (Rojas+2021) and CFIS (Savary et al., in prep.)

Various types of non-lens galaxies to be excluded (Huang+2021).

CNN lens candidates in DECaLS (Huang+2021).

→ Several 100 high-quality strong lens candidates (rely on strict catalog pre-selections)

Lens finding in Pan-STARRS

Cañameras et al. 2020, A&A 644, 163

Systematic search for lensed galaxies in Pan-STARRS as potential hosts of SNe

- → $3x10^9$ sources in Pan-STARRS 3π survey (30 000 deg²)
- \rightarrow 2.3x10⁷ after simple photometric cuts, star removal
- \rightarrow 1.0x10⁶ after apply neural network on photometry
- → 1.2x10⁴ after apply convolutional neural network on g, r, i-band image cutouts

Realistic lens simulations for higher classification accuracies

- realistic lens galaxies, good proxies of lens mass
- Einstein radius distributions, number of multiple images
- source colors and morphologies, inclusion of neighbours
- background sky properties and artefacts, local PSF models

\rightarrow Paint lensed arcs on survey stacks

Step 1- Catalog-level neural network

Cañameras et al. 2020, A&A 644, 163

- 1) Aperture photometry of mocks in *gri* bands \rightarrow 1.04", 1.76", 3.00", and 4.64" radii
- 2) Aperture photometry of negative examples

→ color variations and radial gradients

- Total of 10⁵ + 10⁵ labelled examples
- Classify with a fully-connected network
- Safe \rightarrow Zero known lenses excluded

Step 2- Convolutional neural network

Cañameras et al. 2020, A&A 644, 163

- Negative examples: LRGs, face-on spirals, rings, groups from GalaxyZoo + different fractions
- Extensive tests on the CNN architecture
- Hyperparameter optimization
- Cross-validation and best epoch

Epoch

0.7

0.6

0.5 SSO 0.4

0.3

0.2

0.1

New lenses in Pan-STARRS

Cañameras et al. 2020, A&A 644, 163

→ 330 new high-quality lens candidates after visual inspection

- Recover known lenses
- One system spectroscopically-confirmed
- Spectroscopic follow-up and lens modeling ongoing (Taubenberger et al., in prep.)
- Many false positives from CNN (inspection time would be x 50 for Rubin LSST)

Improving lens finding pipelines for Rubin LSST

Cañameras et al. 2021, A&A 653, L6

Method very sensitive to the design of training data sets \rightarrow Quantifying recall and completeness need representative test sets (with all contaminants, artefacts...)

Test on high-quality multiband imaging from Subaru Hyper Suprime-Cam

220 lenses from previous non-ML searches in HSC + 50,000 non-lenses in COSMOS + 1000 ambiguous cases from SpaceWarps (Sonnenfeld+2020)

1) Construction of the ground truth data set: design of lens simulations and choice of negative examples

2) Influence of neural network architectures, number of bands, data augmentation, ...

False-positive rate can be reduced from 1% to ~0.01%!

Fig. Receiver Operating Characteristic (ROC) curves using observed HSC lenses and non-lenses.

New lenses in HSC PDR2

Cañameras et al. 2021, A&A 653, L6

Validation and application to 6.3×10^7 galaxies with Kron radius $\geq 0.8^{\circ}$ from Hyper Suprime Cam (HSC) Public Data Release 2 + dedicated search for high-z lenses (Shu et al., in prep.)

 \rightarrow Can minimize dependence on rotation and on local seeing variations between bands

→ 470 lens candidates (>40% are newly discovered)

Current best networks would select ~250,000 candidates in LSST footprint (for ~40,000 detectable galaxy-galaxy lenses, Collett+2015) \rightarrow OK for crowdsourced classification

Or try combine unsupervised and supervised ML techniques to bypass visual inspection?

0.60, 3.0	0.17, 3.0	1.00, 3.0	0.10, 3.0	0.14, 2.8	0.14, 2.8	0.15, 2.8
A State of the			1. S.			a second second
and the second second	States States	Sector Sec.			CONTRACTOR OF	
HSCJ0200-0344	HSCJ1004-0031	HSCJ1641+4259	HSCJ2220+0433	HSCJ0120+0011	HSCJ0128+0038	HSCJ0203-0519
1.00, 2.8	0.13, 2.8	0.19, 2.8	0.87, 2.8	0.94, 2.8	0.58, 2.8	0.14, 2.6
100			and the second			
		100 C				
Sales State	and the second		State State			
HSCJ0928-0045	HSCJ1155-0144	HSCJ1200+0056	HSCJ1221+0018	HSCJ1224+0117	HSCJ2325+0037	HSCJ0159-0504

Examples of new ResNet high-quality lens candidates from HSC DR2.

Lens modeling with machine learning

Stefan Schuldt Schuldt et al. 2021, A&A 646, 126

Regression convolutional neural network

- Train and test on HSC Wide griz to prepare for LSST
- Lens mass profile parameters are recovered
- Results are stable, e.g. for fainter lensed sources
- Translates into accurate predictions of image positions and time delays

Summary

- Lensed SNe provide excellent opportunities to constrain cosmology and stellar physics
- Current and future surveys will have hundreds of new lensed supernovae

→ Need a rapid identification of static galaxy-galaxy strong lenses as potential SN hosts

• Combining highly-realistic simulations and supervised machine learning pipelines speeds up lens searches in large-scale imaging surveys

→ about 500 new high-quality candidates in Pan-STARRS1 and HSC Wide PDR2 + ongoing spectroscopic confirmation

- Visual inspection to exclude contaminants \rightarrow Can be minimised for Rubin LSST
- Testing performance requires representative sets from real observed images
- Lens modeling with machine learning yields huge gain in speed (<u>Schuldt+2020</u>; see also Hezaveh+2017, Perreault-Levasseur+2017, Park+2020, Pearson+2019,+2021, ...)

Past lensed supernova discoveries

Fig. SN Refsdal behind MACS J1149.6+2223 (Kelly et al. 2015).

Fig. SN iPTF16geu (Goobar et al. 2017), Credit NASA/ESA.

Fig. SN Requiem behind MACS J0138.0-2155 (Rodney et al. 2021).

Cosmology with lensed supernovae

Advantages:

SNe have characteristic light curves, enabling time-delay measurements.

Lens mass modeling is more straightforward, after SNe fade (quasars outshine other components).

SNe are standard candles.

Challenges:

Microlensing of SN by stars in the foreground lens.

Lensed SNe are very rare.

→ Better precision on H_0 than lensed quasars (Suyu et al. 2020)

Fig. Illustration of a lensed SN event (credit S. More).

slide material from Sherry Suyu

Influence of lens simulations

10³

10²

 10^{1}

100

0.2

1.0

 $\theta_{\rm F}$ [arcsec]

2.0

We have tested multiple combinations of positive/negative examples

- Highly-realistic lens simulation with
 - Various distributions on physical parameters (e.g. natural/flat distributions in Einstein radius?)
 - Various selections of lens and source galaxies (colors, redshifts, ...)
 - Various configurations (ratio of doubles/quads), min S/N, min μ

 \rightarrow Parameter distributions play a major role (do not need to follow nature)

- Negative examples including
 - Random non-lens galaxies, or boosted fractions of usual interlopers (spirals, rings, isolated LRGs, groups, etc...)
 - Draw interlopers from GalaxyZoo + Unsupervised classifications

 \rightarrow Need to include sufficient examples in each class for training