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● From Imaging Surveys to Parameter Constraints
● Pixel-domain Classification 
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Large-Scale Structure Imaging Surveys

Melchior+2021                                                                           
Credit: Legacy Surveys/D. Lang, NAOJ/HSC                                     



From Images to (Astro)Physics Constraints

● Source catalog & photometry

● Object classification/detection

● Sample selection - characterize selection probability (distribution & biases)

● Measurement of sample properties/summary statistics

● Modeling & inference



From Images to (Astro)Physics Constraints

● Source catalog & photometry

● Object classification/detection

● Sample selection - characterize selection probability (distribution & biases)

● Measurement of sample properties/summary statistics

● Modeling & inference     Ben’s & Paco’s reviews

This talk will highlight some examples on the importance of selection functions 
and (systematic) uncertainty quantification.

My selection bias for this talk: examples from the Dark Energy Survey.



DES Basics

● Blanco 4-meter telescope at Cerro Tololo
(CTIO) in Chile Dark Energy Camera (DECam)

● 3.0 sq. deg. field-of-view, 70 4kx2k CCD chips, 
570 Mpixels, grizY filters

Rubin Observatory

c.f. Rubin LSST Camera 9.6 sq. deg, 189 4kx4k CCD chips, 3.2 Gpixels, ugrizY



The Survey

● 5000 sq. deg. footprint, observed 2013-2019, wide field + supernova fields 
● Overlap with SPT, ACT, Stripe 82
● DR2 (6 years) of 543M galaxies + 145M stars to r~23.5 
● Data released to the public: https://des.ncsa.illinois.edu/home

Credit: Cyrille Doux 

c.f. LSST 18,000 sq. deg., 20B galaxies + 17B stars 
to r~27.8, also much higher cadence time domain 

https://des.ncsa.illinois.edu/home


The People

● DES is a collection of ~400 scientists from 25 institutions in 7 countries (USA, 
UK, Spain, Brazil, Switzerland, Germany, Australia) 

● Lots of Early Career Scientists leadership 
● Checkout Scientists of the Week, Darchive, #ThisIsDES, #Darkbite
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https://www.darkenergysurvey.org/education/scientist-of-the-week/
https://www.darkenergysurvey.org/news-and-results/darchives/
https://twitter.com/hashtag/ThisIsDES?src=hashtag_click
https://twitter.com/hashtag/darkbites?src=hashtag_click


DES Science Spans a Wide Range

Galaxy 
Clusters

Galaxy Evolution 
and QSOs

Large-scale 
Structure

Milky Way

Strong Lensing

Supernova

Transients and 
Moving Objects

Weak Lensing

Astrophysics
Cosmology
Particle physics

DES Collaboration 2016
The Dark Energy Survey: more than dark energy – an overview. 



A very incomplete list of science highlights...

380+ papers have been posted from DES to date, check out the full list here: 
https://dbweb8.fnal.gov:8443/DESPub/app/PB/pub/pbpublished

Credit: 
CosmoHub

Lots of methodology advance 
accompanying science results.

https://dbweb8.fnal.gov:8443/DESPub/app/PB/pub/pbpublished


Milky Way
Massive discovery space:

● Dwarf Galaxies
● Stellar Streams
● Globular Clusters
● Proper Motion
● Brown dwarfs and ultra-cool objects
● MW stellar distribution

MW Satellites identified using matched filter (Koposov+’15) 
and likelihood-based search(ugali, Bechtol+’15, Drlica-
Wagner+’15), selection function characterized through 
artificial injections (Drlica-Wagner+’20) .

Milky Way Satellites

Stellar Streams

DES

Credit: Alex Drlica-Wagner

Credit: Ting Li



Milky Way Satellites

The position-dependent Milky Way satellite luminosity function provides 
information to constrain different dark matter properties. Need to account for 
both satellite detectability and uncertainties in the galaxy-halo connection.

Nadler et al. (2021)



Milky Way Stellar Streams
Shipp et al. (2018)

Isochrone-fitting + matched-filter technique to search for streams that composes of stars 
formed at the same time and located at approximately the same distances. 

See Helena Dominguez Sanchez’s talk for DL stream detection in HSC-SSP.



Low Surface Brightness Galaxies (LSBG)

Tanoglidis+2021ab

LSBGs probe halo-galaxy connection at extreme end. Individual 
systems with extremely high dark matter content (van 
Dokkum+’18,’19) may challenge LCDM galaxy formation - requires 
wide-field census + completeness.

23,790 LSBGs from DES (Tanoglidis+2021ab)

● Detection plagued by galactic cirrus, diffuse light from bright objects, 
star formation knots 

● CNN trained on visually confirmed LSBGs and artefacts outperforms 
feature-based ML due to better artefact rejection

● Good transfer learning to deeper HSC data with small retraining sample

See also SMUDGes Survey (DECaLS re-reduction on S82, Zaritski+21) for 
related automated classification and artefact rejection. Complete match with 
DES sample to 25 mag/arcsec2.



Galaxy Evolution

Galaxy morphology classification of 27M DES-
DR1 galaxies using CNN (Vega-Ferrero+’21)

Enables galaxy evolution studies with v.large sample

Comparison of ML and DL morphology 
classifiers, trained on Galaxy Zoo, using DES 
galaxies (Chen+’20)

Comparison of both catalogs forthcoming

Related talks:
J. Vega-Ferrero: Pushing automated morphological classifications to their limits with DES
A. Gosh: Morphology & Quenching of Galaxies […] using Interpretable Bayesian CNNs
Y.-T. Chen: Beyond the Hubble Sequence - Exploring galaxy morphology with unsupervised machine learning



DES-Y1 Cluster Cosmology 

DES et al. ‘20

Galaxy clusters are the largest virialized objects in the Universe, 
sensitive probe of structure growth - requires “mass-observable” 
relation between observed mass proxy and halo mass.

DES uses redMaPPer algorithm to find clusters.

Count clusters in bins of optical richness (+redshift), model selection 
function using simulations and test on SDSS (Costanzi+’18).

DES et al. 2020: combine number counts with mass calibration using 
weak lensing on small and large scales (McClintock,Varga+’18).

DES Clusters are contained in the volume probed by DES 3x2pt 
(galaxy clustering + weak lensing), should be highly correlated!



DES-Y1 Cluster Cosmology 

Contrast DES-Y1 cluster lensing cosmology 
result (weak lensing mass calibration) with 
different cluster selections and mass 
calibrations:
4x2pt+N: same sample, mass calibration from 
large-scale clustering – marginalized over 
wide range of selection bias
DES-NC+SPT+MOR: high-mass Y1 clusters, 
mass calibration from SPT+weak lensing 
(Costanzi+’20)

To,Krause+’21

Y1 cluster lensing ↔DES-NC+SPT+MOR: issue with low-mass clusters

Y1 cluster lensing ↔ 4x2pt+N : issue with small-scale lensing



Strong Lensing with DES

Lens System DES J0408-5354 discovered through 
visual search (Diehl+’14), two sets of multiple images 
at different redshifts.
Time-delay cosmographic analysis using external
● High-resolution imaging (Shajib+’19)
● Redshifts for lens components (Lin+’17)
● Time delays (Courbin+’18)
● Velocity dispersion for main lens (Buckley-Geer+’20)

Strong lens classification using CNNs (Jacobs+’19) 
trained on 250,000 simulated lenses: identified 7301 
candiates, 84 'probably' or `definitely' lenses after 
visual inspection. Shajib+’20

Future-looking Strong Lensing Searches:
F. Courbin: Search for galaxy-scale strong lenses in DES and CFIS
R. Canameras: Identifying strong gravitational lenses in current and future large-scale imaging surveys



DES-SN fields imaged with ~1 week cadence.
SN candidates for spectroscopic follow-up from difference 
imaging pipeline (Kessler+’15) and RF autoScan classifier 
(trained on early DES data, Goldstein+’15).

Final DES-Y5 SN Ia cosmology results will use 1800 
photometrically-typed SNIa (Vincenci+’21) whose host 
galaxies have spectroscopic redshifts.

Stage-IV: Orders of magnitude more transients + variable 
objects, requires more robust classifiers and follow-up 
criteria - PLAsTiCC Photometric LSST Astronomical Time-
Series Classification Challenge (Kessler+’19,Hlozek+’20) 

Time-Domain Science: Supernovae
DES et al. (2019)

C. Alves: Considerations for optimizing photometric classification of supernovae from the Rubin Observatory



Time-Domain Science: Solar System

● Method: 
○ Look for moving objects by 

comparing multiple exposures at 
the same sky

○ Orbit linking and S/N selection
● Catalog of 815 TNOs
● Comet C/2014 UN271 

(Bernardinelli-Bernstein)
○ Largest well-studied comet to date
○ Most distant comet to be 

discovered on its incoming path, 
will make its closest approach to 
Earth in 2031 

○ Informs early migration scenarios 
for large objects in the Oort Cloud 
and their connection with the Solar 
System 

Bernardinelli, Bernstein et al. (2021)



Systematics Calibration for 3x2pt Cosmology

Credit: 
CosmoHub



Observing the large scale structure
background (source) galaxies

foreground (lens) 
galaxies, which are 
clustered

lensed /sheared 
image of 
background galaxies
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3x2pt cosmology

2x2pt

A joint analysis maximises the cosmological
information and robustly constrains
astrophysical & observational systematic
priors in the analysis!

Cosmic Shear : shape-shape

Galaxy Clustering : position-position

Galaxy-Galaxy Lensing : position-shape

redshift



Dark Energy Survey Year 3 Analysis. How it started...



Dark Energy Survey Year 3 Analysis. How it started...

chart by M. Troxel
based on discussions 
at fall 2017 
collaboration meeting 



DES Year 3: pixels to cosmology

Redshifts —— Shapes  —— Clustering    —— Simulations —— Theory  —— Results

illustration by 
Alex Amon



Dark Energy Survey Year 3 results. List of key and supporting papers
1. “Blinding Multi-probe Cosmological Experiments” J. Muir, G. M. Bernstein, D. Huterer et al., arXiv: 1911.05929, MNRAS 494 (2020) 4454
2. “Photometric Data Set for Cosmology”,  I. Sevilla-Noarbe, K. Bechtol, M. Carrasco Kind et al., arXiv:2011.03407, ApJS 254 (2021) 24
3. “Weak Lensing Shape Catalogue”, M. Gatti, E. Sheldon, A. Amon et al., arXiv:2011.03408, MNRAS 504 (2021) 4312
4. “Point Spread Function Modelling”, M. Jarvis, G. M. Bernstein, A. Amon et al., arXiv:2011.03409,  MNRAS 501 (2021) 1282
5. “Measuring the Survey Transfer Function with Balrog”, S. Everett, B. Yanny, N. Kuropatkin et al., arXiv:2012.12825  
6. “Deep Field Optical + Near-Infrared Images and Catalogue”, W. Hartley, A. Choi, A. Amon et al., arXiv:2012.12824
7. “Blending Shear and Redshift Biases in Image Simulations”, N. MacCrann, M. R. Becker, J. McCullough et al., arXiv:2012.08567
8. “Redshift Calibration of the Weak Lensing Source Galaxies”,  J. Myles, A. Alarcon, A. Amon et al., arXiv:2012.08566    
9. “Redshift Calibration of the MagLim Lens Sample using Self-Organizing Maps and Clustering Redshifts”, G. Giannini et al., in prep.
10. “Clustering Redshifts – Calibration of the Weak Lensing Source Redshift Distributions with redMaGiC and BOSS/eBOSS”,  M. Gatti, G. Giannini, et al., 

arXiv:2012.08569
11. “Calibration of Lens Sample Redshift Distributions using Clustering Redshifts with BOSS/eBOSS”, R. Cawthon et al. arXiv:2012.12826
12. “Phenotypic Redshifts with SOMs: a Novel Method to Characterize Redshift Distributions of Source Galaxies  for Weak Lensing Analysis” R. Buchs, C.Davis, 

D. Gruen et al. arXiv:1901.05005, MNRAS 489 (2019) 820
13. “Marginalising over Redshift Distribution Uncertainty in Weak Lensing Experiments”, J. Cordero,  I. Harrison et al., in prep.
14. “Exploiting Small-Scale Information using Lensing Ratios”, C. Sánchez, J. Prat et al., rXiv:2105.13542
15. “Cosmology from Combined Galaxy Clustering and Lensing - Validation on Cosmological Simulations”, J. de Rose et al., arXiv:2105.13547 
16. “Unbiased fast sampling of cosmological posterior distributions”, P. Lemos et al., in prep.  
17. “Assessing Tension Metrics with DES and Planck Data”, P. Lemos, M. Raveri, A. Campos et al., arXiv:2012.09554
18. “Dark Energy Survey Internal Consistency Tests of the Joint Cosmological Probe Analysis with Posterior Predictive Distributions”, C. Doux, E. Baxter, P. 

Lemos et al. arXiv:2011.03410, MNRAS 503 (2021) 2688
19. “Covariance Modelling and its Impact on Parameter Estimation and Quality of Fit”, O. Friedrich, F. Andrade-Oliveira, H. Camacho et al., arXiv:2012.08568
20. “Multi-Probe Modeling Strategy and Validation”, E. Krause et al., arXiv:2105.13548
21. “Curved-Sky Weak Lensing Map Reconstruction”, N. Jeffrey, M. Gatti, C. Chang et al., arXiv:2105.135439
22. “Galaxy Clustering and Systematics Treatment for Lens Galaxy Samples”, M.Rodríguez-Monroy, N. Weaverdyck, J. Elvin-Poole, M. Crocce et al., 

arXiv:2105.13540
23. “Optimizing the Lens Sample in Combined Galaxy Clustering and Galaxy-Galaxy Lensing Analysis”, A. Porredon, M. Crocce et al., arXiv:2011.03411 PhRvD 

103 (2021) 043503
24. “High-Precision Measurement and Modeling of Galaxy-Galaxy Lensing”, J. Prat, J. Blazek, C. Sánchez et al., arXiv:2105.13541
25. “Constraints on Cosmological Parameters and Galaxy Bias Models from Galaxy Clustering and Galaxy-Galaxy Lensing using the redMaGiC Sample”, S. Pandey 

et al., arXiv:2105.13545
26. “Cosmological Constraints from Galaxy Clustering and Galaxy-Galaxy Lensing using the Maglim Lens Sample” A. Porredon et al., arXiv:2105.13546
27. “Cosmology from Cosmic Shear and Robustness to Data Calibration”, A. Amon, D. Gruen, M. A. Troxel et al., rXiv:2105.13543
28. “Cosmology from Cosmic Shear and Robustness to Modeling Assumptions”, L. Secco, S. Samuroff et al., rXiv:2105.13544
29. “Magnification modeling and impact on cosmological constraints from galaxy clustering and galaxy-galaxy lensing”, J. Elvin-Poole, N. MacCrann et al., in prep.
30. “Cosmological Constraints from Galaxy Clustering and Weak Lensing” The DES Collaboration arXiv:2105.13549 



Photometric redshift characterization

Imaging surveys need an accurate characterization of their redshift distributions, 
for both lens and source galaxies, in order to yield unbiased cosmological 
constraints. 
Self-organizing maps (SOM, Kohonen’82): unsupervised learning technique, 
increasingly used for  photometric redshift characterization (Masters+’15,’17,’19; 
Buchs, Davis+’19, Myles, Alarcon+’21; Wright+’20).

Buchs,Davis+’21



Photometry 

(colors):

SOMPZ

Myles, Alarcon+ 2021

DES Year 3 redshift characterization

For the redshift characterization of lensing sources, we use three 
independent sources of information:

Clustering 

(positions):

WZ

Gatti, Giannini+ 2021

Lensing (shapes):

Shear Ratio (SR)

Sánchez, Prat+ 2021



SOMPZ: Redshift distributions from galaxy colors

SOMPZ is a Bayesian redshift scheme to use the DES deep fields as an 
intermediate step between small redshift samples and the wide-field DES sample.

We use artificial galaxy injections (Balrog) to characterize how deep-field galaxies 
would look like in the noisier wide-field conditions.

DF: Hartley, Choi, et al. (2021)
Balrog: Everett et al. (2021)
SOMPZ: Myles, Alarcon, et al. (2021)



SOMPZ: Redshift distributions from galaxy colors

To characterize the deep and wide photometric spaces, we create two different SOMs. The 
Bayesian formalism allows us to connect the two, and to separate different pieces. 

Redshift at a given 
deep photometric 
color

Probabilistic 
mapping between 
deep and wide 
photometric colors

Likelihood of deep and 
wide-field color

DF: Hartley, Choi, et al. (2021)
Balrog: Everett et al. (2021)
SOMPZ: Myles, Alarcon, et al. (2021)



Hyperrank: Cordero, Harrison et al. (2021)
SOMPZ: Myles, Alarcon, et al. (2021)

BOSS/eBOSS

RedMaGiC

We separate source galaxies into four 
redshift bins, and produce realizations 
of their redshift distributions. 
Such realizations include several 
sources of uncertainty coming from:

● Redshift samples.
● Shot noise and sample variance.
● Photometric calibrations. 
● Transfer function. 
● Assumptions in the method. 

SOMPZ: Redshift distributions from galaxy colors



Impact of Photometric Redshift Modeling on Cosmology 
DES-Y3 Amon+’21 KiDS-Viking 450 Wright+’20

A. Wright: Machine Learning Calibration of Cosmic Shear Redshift Distributions
A. Malz: Machine learning for experimental design: stress-testing redshift uncertainty quantification 
and propagation with Redshift Assessment Infrastructure Layers (RAIL)



Galaxy shapes encode the Universe and more...

Bridle+2008

To model the point-spread 
function (PSF) on stars, DES Y3 
uses Piff: PSFs In the Full Field-of-
view (based on GP interpolation)

Jarvis+2021
https://github.com/rmjarvis/Piff



Measure response on ellipticity 
estimator to artificially-applied shear
(Huff & Mandelbaum 2017, Sheldon & Huff 2017)

Unbiased in limit of:

● weak shear
● isolated galaxy images
● perfect knowledge of PSF

Use simulations to calibrate bias from, 
e.g., blending of galaxy images

Image credit: Niall MacCrann

Galaxy shapes measured using Metacalibration



Image Simulations for Blending Calibration

MacCrann+2021

• GalSim (Rowe+’15) image simulations that are 
matched to DES-Y3 data 

• Detected that measured shapes “respond” to the 
shear of galaxies at other redshifts. 

• Modelled and accounted for the impact of blending as 
a redshift-mixing effect 



Calibrate shear biases with image simulations

multiplicative error additive error
● Few percent multiplicative biases due to blending (-1.5 to -4% depending on 

redshift bin)
● Joint impact of blending on shear and photo-z characterized by effective 

redshift distribution

lensing shear

observed ellipticity

MacCrann+2021



100.2 million galaxy shapes for DES Y3

Key improvements over DES Y1:
● More accurate PSF modeling

(Jarvis+2021)

● Improved astrometry
● Expanded suite of null tests 

(Gatti,Sheldon+2021)

● Calibration using realistic image 
simulations that characterize the 
impact of blending on both shear 
and redshifts
(MacCrann+2021)

# galaxies neff σe

100 204 026 5.590 0.268

cf. DES SV: 2-3 million shapes
DES Y1: 34.8 million
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Jeffrey, Gatti+2021, Chang+2018, Vikram+2015
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Rodriguez-Monroy et al. (2021)

Correlation of observed galaxy density 
with survey properties and astrophysical 
maps are removed by re-weighting galaxy 
sample by relation calibrated from data.

Position-Position auto-correlations 
analyzed on large scales 

Combination with galaxy-galaxy lensing 
calibrates linear galaxy bias 

Galaxy Clustering 

clustering: Rodriguez-Monroy et al. (2021)
g-g lensing: Prat et al. (2021)

position-position



Correlation with systematics maps are removed by re-weighting galaxy sample by fitted relation 

LSS systematics 

Accounts for correlation with: 
airmass, seeing, exposure time, depth, 
stellar density, dust, sky brightness, 
calibration residuals
Example (right): correlation with a PCA of 
the above survey property maps

Correct with two template based methods:

● Iterative systematics 
decontamination (ISD) (Elvin-Poole et al 
2017 Rodriguez-Monroy et al 2021)

● Elastic Net (ENET) (Weaverdyck et al 2020)

Rodriguez-Monroy et al. (2021)

Linear combination of survey maps



So far, considered only linear effect of 

foreground/observing systematics on galaxy density.

Rezaie+’20,’21 validated FCNN for non-linear weights 

of imaging systematics affecting eBOSS ELGs/quasars. 

Randomly split footprint into 60/20/20 training/ 

validation/testing.

Check mean density as a function of Galactic extinction 

against expected variance from EZmocks (Zhao+’21) 

without systematics.

Notable effect on low-k power spectrum monopole.

Beyond Linear Systematics Mitigation (eBOSS)

Rezaie et al. (2021)



Systematic mitigation method was validated on simulations

DES LSS systematics validation 

Clustering residuals from:
● Over-correction
● Method choices, incl. NN 
● Template choices

all very small on log-normal mocks

+ Analytically marginalize over overcorrection bias, 

difference in methods and bias from simulations

Balrog Image simulations (Everett et al 2020)

● <10% of signal , consistent with zero
Rodriguez-Monroy et al. (2021)



From 3x2pt Measurements to Cosmology Constraints

Infer parameter posterior                          within model M using Bayes’ theorem

Required Ingredients

● Data likelihood                        with data covariance C

○ Friedrich+2020: Gaussian data likelihood ✓, halo model covariance ✓
● Krause+ 2021: Model M with parameters p, and prior

● Doux+2021, Lemos, Raveri+2021: Criteria which measurements to combine

● Blinding scheme to minimize observer bias 



Catalog-to-Cosmology Pipeline Validation
DeRose+ 2021

Measurements on the full suite of
simulations enabled us to demonstrate that
our analysis was robust to a range of
systematics in a complex simulated setting.

End-to-end tests, starting from redshift
calibration and correlation function
estimation, all the way to cosmological
parameter posteriors show that our 3x2-
point methodologies are unbiased at <0.3
sigma.



Catalogs
Correlation 
Functions

Inference 
Diagnostics

Final 
Constraints

Minimize observer bias through three-staged blinding 
1. Catalog: rescaling of galaxy ellipticities by unknown factor
2. Correlation functions: transformation of summary statistics corresponding 

to unknown change in wCDM parameters   Muir+2020
3. Parameters: shift of parameter values, axes of posterior plots by unknown 

offset

Unblinded parameter constraints after data vectors and modeling were frozen.
Finalized List of model tests and combinations with external data before 
unblinding.

Blind Analysis Protocol



Internal consistency

Two correlated cosmological probes:

1. Cosmic shear (blue)
2. Galaxy clustering and tangential 

shear (orange)

We find consistency between them.

Cosmic shear most sensitive to 
clustering amplitude.

Galaxy clustering and tangential shear
more sensitive to total matter density.
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3x2pt results

We combine these into the 3x2pt probe 
of large-scale structure.

A factor of 2.1 improvement in signal-
to-noise from DES Year 1.

In ΛCDM:

In wCDM:
49
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Conclusions – Imaging Surveys and ML

Very broad range of science enabled by imaging surveys!

Data is often more complicated than anticipated at the start of the analysis.

Accurate selection functions are crucial for correct interpretation, but rarely 
straightforward.

ML excels at certain classification tasks. However, training data already requires 
realistic selection function.

ML promises transformative speed-up for some cosmology problems that are 
intractable today. However, posing those problems well will often require 
considerable ingenuity, especially for Stage-IV accuracy requirements.


