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Source detection

Figure 1: SExtractor (Bertin and Arnouts, 1996) detections in CFHTLS
images (Cuillandre and Bertin, 2006).

• Source catalogs are at the basis of many Astrophysical studies.
• Large amounts of data require automatic source detection.
• Current automatic source detection techniques are limited. 1



Current source detection techniques

• In practice, source detection pipelines proceed in several steps:
• Sky background subtraction.
• Matched filter.
• Peak search or thresholding.
• Deblending procedures.

Figure 2: Example of SExtractor processing (taken from documentation). 2



Current algorithm limitations (1/2)

• Sources come in various scales and shapes.
• Sources can overlap, a phenomenon known as blending.

Figure 3: SDSS (yellow) and Pan-STARRS (red) catalogs.
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Current algorithm limitations (2/2)

• Images can be contaminated by defects triggering false detections.
• Major source of noise in catalogs.

Figure 4: SDSS (yellow) and Pan-STARRS (red) detections.
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Toward machine learning

• Extend current methods with supervised machine learning to:
• Perform adaptative filtering and segmentation.
• Train robust and versatile models.
• Learn directly from pixels (with convolutional neural networks).
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Figure 5: Schematic view of our supervised learning framework.

• Huge amounts of data available in astronomy.
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Our approach: deep coloring

• Source detection needs to be instance-aware.
→ Makes difficult to solve detection and deblending simultaneously.
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Figure 6: Deep coloring approach illustration, based on Kulikov et al., 2018.

• Rely on a semantic segmentation CNN, i.e. pixel labeling.
• The CNN can freely identify each source in output/color maps.
• Constraint so that close objects are identified in different colors.
• Need to know in which color is detected each object to compute loss!
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The deep coloring approach

Figure 7: Footprint (green) and halo (red) of a source.

• Each source k has a footprint M(k) and a halo M
(k)
halo .

• Each source is dynamically affected a color at each training step:
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log(1− ŷ(c , p))

)
7



Training data: stars (1/3)

• Rely on noise-free images of isolated sources.
→ Any ground truth information can be computed for each source.
→ Whole images can be built from scratch.

• SkyMaker (Bertin, 2006) for stars.

Figure 8: Examples of star profiles including different diffraction spike
configurations.
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Training data: galaxies (2/3)

• Rely on noise-free images of isolated sources.
→ Any ground truth information can be computed for each source.
→ Whole images can be built from scratch.

• Cosmological simulations for galaxies.

Figure 9: Example of galaxy images. From left to right: galaxies from
Horizon-AGN (Dubois et al. 2014, rendered by C.Laigle, private
communication), IllustrisTNG (Nelson et al. 2019), Vela (Simons et al. 2019).
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Training data: images (3/3)

Figure 10: Examples of training images with ground truth footprint overlays.

• Contaminants are added in images such as cosmic rays, bad pixels,
persistence effects, fringes, nebulosities, trails, saturation.
→ Rely on MaxiMask training data (Paillassa et al. 2020).
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Qualitative comparison with SExtractor

Figure 11: Left: SExtractor detections. Middle: input image. Right: CNN
prediction. 11



Quantitative comparison with SExtractor

• Completeness and contamination at various detection thresholds:
• CNN thresholds: every 0.02 probability in [0, 1].
• SExtractor thresholds: every 0.25 sky σ in [0.25, 10].
• Completeness: TP

TP+FN .
• Contamination: FP

TP+FP .
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Figure 12: Left: performance in an uncontaminated regime. Right:
performance in a contaminated regime. 12



Qualitative results on real data (1/2)

Figure 13: Left: SExtractor CFHTLS detections. Right: Deep coloring
CNN.
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Qualitative results on real data (2/2)

Figure 14: Left: SExtractor CFHTLS detections. Right: Deep coloring
CNN.
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The detector in practice

• Python with Nvidia Titan X and without multithreading:
→ Image pre-processing alone: ≈2.3 MPix/s.
→ CNN segmentation alone: ≈5 MPix/s.
→ Overall: ≈1.5 MPix/s: ≈11-12s for a 4k2x4k2 CCD.

• Integration in SourceXtractor++ (Bertin et al. 2020).
→ Already done thanks to SX++ modularity and ONNX
(Open Neural Network Exchange).
→ Segmentation maps are naturally handled in SX++.
→ Possibility to optimize for various hardwares.
→ Facilitate use, benchmarks and comparisons.
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Conclusions

• We have a generic and efficient source detection method with CNNs:

• Deep coloring approach.
→ Enables to separate detections in different output maps.

• Comprehensive and diverse data.
→ Able to detect various source morphologies.
→ Robust to the presence of contaminants.

• Internal testing is ongoing.

• Will be available soon !
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Thank you for your attention.
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