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The problem: machine learning classifiers trained on non-representative data

generalize poorly.

2015

@jackyalcine

2018

Jacky lives on @jalcine@playvicious.social now.
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Gender Darker Darker Lighter Lighter

Classifier Male Female Male Female

B® Microsoft 94.0% 79.2% 100% 98.3%
F ]

FEACE 99.3% 65.5% 99.2% 94.0%
W .
88.0% 65.3% 99.7% 92.9%
F— B ]

Gender Shades (MIT Media Lab, 2019)

Gorillas Graduation

Poor accuracy in facial recognition for dark

-
skinned females

BUSINESS 81.11.2818 B87:88 AM

When It Comes to Gorillas, Google Photos Remains Blind

Google promised a fix after its photo-categorization software labeled black people as gorillas in 2015. More than two years later, it hasn't

found one.

Largest
Gap

20.8%

33.8%

34.4%

Cosmology

Incorrect classification of Type
la vs non-la from photometric
data leads to cosmological
parameters systematic bias.

Non-representative
spectroscopic training sample
leads to incorrect photo-z
estimation
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Distance-Redshift Relation Measurement S o
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Supernovae Discoveries Over Time
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The Problem:

We want to classify Type la vs non-la reliably and
efficiently from light-curve data alone.

BUT:
Spectroscopic training set is non-representative.

Classification challenges:

The Photometric LSST Astronomical Time-series Classification Challenge PLAsTICC (Kessler et al, 2019)

Supernova Photometric Classification Challenge (Kessler et al, 2010)
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Covariate Shift, or Biased Training Set

Light-curve data Type la or not

Given a feature space, X, and a label space, Y (K > 1 classes/dependent variables)

Spectroscopic training set

we have n labelled samples {x;,y’} from the source domain
Photometric Iight-curve.only

n, unlabelled samples from the target domain, {x/} .

Isitala? Features: redshift & apparent mag
Task: predict {y} Label: la or non-la
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Our Approach: Propensity Score Stratification T o

Work by Max Autenrieth (Stats PhD student), in collaboration with David van Dyk (Imperial) & David Stenning (Simon Fraser U.)
Improving on our previous work (“STACCATQO”), Revsbech, RT, van Dyk (2018)

e(x;) = probability for object i to be Rosenbaum & Rubin (1983, 1984) show that,
selected into the source domain: conditional on their propensity scores, the k
subgroups (“strata”) have approximately
_ balanced covariate distribution, i.e.
e(x)=P(s;=1]|x)

Idea (StratLearn): st(x) ~ P;j(x) forj=1,...,k

subdivide (“stratify”) target and source data in _ 6ol H
in k subgroups according to quantiles of Since py(y|x) = p(y|x), it follows that

their propensity scores. Then supervised N .
learning in each stratum (“stratified learner”) psj(x’ y) R p tj(x’ y) for] =1,....k




StratLearn on SNla data

Propensity score partitioning of
target domain (test data):
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Conditional on the propensity scores (i.e., within each

stratum), the source and target outcomes are

approximately the same.

This means: inside each stratum, the imbalance has
been redressed, i.e. source data are approximately

representative

Important: the underlying theorem only valid if all

potential confounding covariates (i.e., things the SNla
type could depend on) are included in the propensity
score estimation!

Number Number  Prop.
Stratum Set of SNe of SNla of SNla

1 Source 958 518 0.54
Target 3306 1790 0.54
2 Source 120 28 0.23
Target 4144 927 0.22
3 Source 13 4 0.31
Target 4250 540 0.13
4 Source 7 4 0.57
Target 4257 610 0.14

5 Source 4 4 1
Target 4259 662 0.16

= Balanced proportions

. Balanced proportions
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True Positive Rate

Classification/Regression with StratLearn SET s
—— Spec StratLearning
% | — Photo outperforms
o StratLearn performance ° previous methods
(AUC = 0.958) close to for this problem.
o | “gold standard” of @
° unbiased training set S Performance
(AUC=0977) without any > improvement is
< augmentation, beats all @ larger in the
previous methods: 83 presence of high-D
< noisy covariates.
= * Lochner et al (2016):
Biased: AUC = 0.902 AUC=0.855 S
3 uLSIF:  AUC=0.902 * Pasquet et al (2019):
NN: AUC =0.923 AUC=0.939
— ISPS:tL . 238 = 8-32; - Revsbech et al o
3V | — Stratkeam: =% (“STACCATO”, 2018): S

0.0 0.2 0.4 0.6 0.8 1.0 AUC=0.94

False Positive Rate

16 22

18 20
r Magnitude

Note: AVOCADO (Boone, 2019), winner of the PLASTICC challenge 2019, uses an extended version of STACCATO (incl. augmentation).
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Conclusions SRR s

@ Covariate shift is an important and recurrent phenomenon in
supervised learning. In dark energy research, it will affect the next
generation of large SNla data.

. We propose a general approach (StratLearn) based on stratifying
source and target domain according to propensity scores (= probability
of an object to be included in the source domain).

@ Within strata, source and target domains are better balanced:
StratLearn shows improved performance in regression and
classification tasks compared to best-in-class alternatives.

Thanks to my collaborators: Max Autenrieth (PhD student), David van Dyk (Imperial),
David Stenning (Simon Fraser U.). Paper here: https://arxiv.org/abs/2106.11211




Opportunities in (Data Science) x (Astro) at SISSA:

Currently open: Postdoc position (2+1 years)
Women and candidates from under-represented groups particularly encouraged!

Deadline: Nov 11th 2021
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