
  

Lensing in cosmology

First case: lensing of a quasar by a galaxy

   The Einstein cross: QSO 2337+0305

Distances in cosmology

Images and caustics in the isothermal potential

The mass-sheet degeneracy

Time delays

Microlensing variability



  

This time the complexity will increase
We will see multiple caustics merging



  

The lens equation in cosmology

In the weak field limit and for small deviations
The lens equation is still valid if we use the cosmological angular distances

D I θ=d → DI=
d
θ

angular distances

source lens observer

α

θE

DLD S

DLS=D S−DL

b

See for instance Narayan & Bartelmann (2008)



  

Distances in cosmology

DC=
c

H 0
∫

dz
E(z )

Comoving distance: H (z )=H 0 E(z )

 curvature density parameter
Comoving angular distance:

K
−1
2 sin (K

1
2 DC ) for K>0

−K
−1
2 sinh (−K

1
2 DC ) for K<0

DC for K=0 DM =

Curvature: K 

ΩK=−(
c

H 0
)

2

K 

Angular distance: DA=
DM

1+z
 Do not subtract angular distances: use comoving angular distance

then normalize using redshift



  

An interesting cosmological situation
The Einstein cross: QSO 2337+0305

A distant quasar source: z=1.695

A nearby galactic lens: z=0.0395

(light travel time: 9.846 Gyr)

(light travel time: 0.540 Gyr)

(discovered by John Huchra in 1985)



  

The elliptical lens

QSO 2237+0305
         (HST)

The Einstein cross



  

A simple model: elliptical isothermal potential

ϕ=√(1−η) x2
+(1+η) y2 ϕ≈r (1−

η

2
cos2θ)for small ellipticity

r⃗ S=(dr+
η

2
cos2θ) u⃗r−ηsin 2θ u⃗θ

The lens equation:

dr=r−1

r⃗ S= r⃗−∇⃗ ϕ

η

With:

(to first order in     )



  

A simple model: elliptical isothermal potential

Circular source with impact parameter      and radius  r⃗0 R0
r⃗0

R0

dr=
η

2
cos2θ−x0 cosθ− y0 sinθ±√R0

2
−(ηsin 2θ−x0sin θ+ y 0 cosθ)

2

r⃗ s=R⃗ s+r⃗ 0 ; |R⃗ s|=R0

r⃗0=( x0, y 0)

R⃗S

r⃗ S

r⃗ S=(dr+
η

2
cos2θ) u⃗r−ηsin 2θ u⃗θ



  

dr

Einstein ring

Radial position of the images 

dr=−
η

2
cos2θ−x0 cos θ− y0 sinθ



  

dr=
η

2
cos2θ−x0 cosθ− y0 sinθ±√R0

2
−(ηsin 2θ−x0sin θ+ y 0 cosθ)

2

Image forms if: 

R0

|df 0|=|ηsin 2θ− x0sin θ+ y 0cos θ|<R0

Here represented for: x0=0 ; y0=0 ; df 0=|ηsin 2θ|



  

Source at center of elliptical lens, 

dr=
η

2
cos2θ±√R0

2
−(ηsin 2θ)

2
Images when: sin 2θ<R0

Images centers: sin 2θ=04 images

Source near center
Of elliptical lens



  

Caustics for the isothermal potential

ϕ=√(1−η) x2
+(1+η) y2

≈r (1−
η

2
cos 2θ) xS=x−

∂ϕ

∂ x
y S= y−

∂ϕ

∂ y

J=
∂ xs

∂ x

∂ ys

∂ y
−
∂ xs

∂ y

∂ ys

∂ x
≃

r−1
r
−

3 cos2θ
2 r

η To first order in η

Critical lines: J=0 → r=1+
3
2
ηcos2θ



  

Caustics:

ys=(−3
2

sinθ+
1
2

sin 3θ)η

xs=( 32 cos θ+
1
2

cos3θ)η

η=0.05

We transform the equation for the critical lines to the source plane
by using the lens equation

2ηThe amplitude of the caustics diagram is:



  

df 0=ηsin 2θ− x0sin θ+ y 0cos θ

For x0=2 η , y 0=0

Cusp caustic=order 3

(df 0), θ=0 ; (df 0),θ , θ=0

dr=
η

2
cos2θ−x0 cosθ±√R0

2
−df 0

2Image equation



  

Image formation → |df 0|<R0 ; R0 source radius
df 0

Arc

Counter image Source

R0



  

Cuspsub-critical Beyond cusp



  

df 0=ηsin 2θ− x0sin θ+ y 0cos θ

For x0≃0.7η , y0≃0.7 η

Fold caustic=order 2

(df 0), θ=0

dr=
η

2
cos2θ−x0 cosθ− y0 sin(θ)±√R0

2
−df 0

2
Image equation



  

Arc

Counter image

Source

df 0

R0

Image formation → |df 0|<R0 ; R0 source radius



  

FoldSub-critical Beyond fold



  

The mass sheet degeneracy

κ=(1−λ)~κ+λ

Let introduce a new surface density~κ

It relates to the initial surface density    by:κ

κ=
1
2
Δϕ ~κ=

1
2
Δ
~
ϕWith: and: ϕ=(1−λ)~ϕ+

1
2
λ (x2

+ y2
)

(take laplacian and check it is working)



  

ϕ=(1−λ)~ϕ+
1
2
λ (x2

+ y2
)

The lens equation:

xS=x−
∂ϕ

∂ x
=(1−λ)( x−∂

~
ϕ

∂ x )=(1−λ)~xS

y S= y−
∂ϕ

∂ y
=(1−λ)( y−∂

~
ϕ

∂ y )=(1−λ)~yS

κ=(1−λ)~κ+λ

The lens equation with the  new surface density ~κ
Is equivalent to the former lens equation
If we re-scale the source coordinates the two equations are equivalent

This is known as the mass-sheet degeneracy (adding a constant density )
Leads to a re-scaling of both lens and source coordinates



  

Time delays

quasar
observer

images

Basic idea: The path of light for each image is different
Consequence: a time delay between the images

Refsdal (1964)



  

In practice the source: quasar
Is variable

Thus time delays can be observed



  

The time delay

τ=
(1+ zL)

H 0

d Ld S

d LS
( 12 (θ⃗−β⃗)

2
−ψ(θ⃗))

d I=(
c

H 0

)
−1

D I D I∝DC=
c

H 0
∫

dz
E(z )

d I : dimensionless distances

The first thing to note is that the time delay is proportional to: H 0
−1

Thus measuring the time delay is direct measurement of H 0

(for spatially flat universe or small curvature)

τ=
(1+ zL)

c
DL D S

DLS
( 12 (θ⃗−β⃗)

2
−ψ(θ⃗ ))



  

In practice what we measure is the differential time delay between the images

τ=
(1+ zL)

H0

d Ld S

d LS
( 12 (θ⃗−β⃗)

2
−ψ(θ⃗ )) τ (θ ,β)=T d ( 12 ( θ⃗−β⃗)

2
−ψ(θ⃗))

Δ τA , B=τ(θA ,β)−τ(θB ,β)=T d ( 12 (θ⃗A−β⃗)
2
−ψ(θ⃗A)−

1
2
(θ⃗B−β⃗)

2
+ψ(θ⃗B))

This is clearly model dependent: one 
needs to estimate the potential

A,B

For a singular isothermal sphere: Δ τA , B∝ (R A
2
−RB

2 )

Images positionsKochaneck & Schechter (2004)



  

How to interpret the time delay

First it is nothing really new...

If we minimize the time delay with respect to  θ⃗

We obtain the lens equation:
τ=
(1+ zL)

H0

d Ld S

d LS
( 12 (θ⃗−β⃗)

2
−ψ(θ⃗ ))

β⃗=θ⃗−∇⃗ ϕ The formulation: time delay or lens equation
Are seen as equivalent



  

The physical interpretation of the time delay

τ=
(1+ zL)

H0

d Ld S

d LS
( 12 (θ⃗−β⃗)

2
−ψ(θ⃗ ))

Geometric delay
(the Shapiro delay),

Gravitational delay



  

β

θ

Q

b

δ1=a1−DLS≃
1
2

b2

DLS

δ2=a2−DL≃
1
2

b2

DL

δ=δ1+δ2=
DL D S

DLS

(θ−β)
2

τ=
(1+ zL)

H 0

d Ld S

d LS
( 12 (θ⃗−β⃗)

2
−ψ(θ⃗))

With the appropriate scale factor we recover the geometric time delay

DLS

a1

a2

DL

b=DL(θ−β)

τ≡δ
c

d I=(
c

H 0

)
−1

D I



  

The Shapiro time delay

First predicted in 1964 by Irwin Shapiro

             For a nearly static and weak field

     The time delay due to the gravitational field

is directly proportional to the Newtonian potential  

τ=
(1+ zL)

H0

d Ld S

d LS
( 12 (θ⃗−β⃗)

2
−ψ(θ⃗ ))



  

Problem with time delay estimations

Some practical examples of light curves of images
for a variety of lenses

How do time delay look like in practice ?



  

Problem with time delay estimations

The time delay is model dependent

Any model of the potential or surface density is affected
by the mass-sheet degeneracy

It is essential to find a method to deal with the mass-sheet degeneracy

 Treu & Koopmans (2002) propose to use stellar kinematics

Keeton & Zabludoff (2004) use the environment of the 
lens (galaxy counts, weak lensing)



  

Some practical examples of light curves of images for a variety of lenses

                               A short review from the literature



  

JVAS B1422+231



  

PG 1115+080



  

RX J0911+0551



  

Eulaers 
(2012)

Compilation 
For 11 systems



  

Grillo etal. (2018)

Grillo etal. (2020)

H 0≃73km / s/Mpc

Planck estimate
H 0≃67.4 km /s /Mpc



  

Why do we observe un-correlated variability of the images of QSO 2337+0305 ?

Typical time scale of variations
 ~ a few months to years

Typical Einstein radius crossing time
For a solar mass star in the galaxy
A few hundred days

Wozniak etal. (2000)



  

What is going on ?

Local stars

Galaxy

Quasar

The deflection angle is perturbated
By the field of the local stars



  

Typical Numbers

The main galaxy: M ≃1010 solar mass ; RE∝√M → RE ≃30 Kpc

Solar mass star: RE ≃√10−10
×30kpc ≃0.3 pc

Perturbation by stars very likely

Density in the solar neighborhood: 0.08 solarmass / pc3

0.08×scale height≃0.08×150≃12 solar mass / pc2

Mean distance between stars:

Projected density in the solar neighborhood:

√ 1
12

≃0.29 pc



  

Use ray tracing to reconstruction the amplification map 
And the local caustics due to the stars

Local equations: total field=field of the galaxy+sum of the field of the local stars

ϕ=√(1−η) x2
+(1+η) y2

+Σiμ i log (|r⃗− r⃗i|)

r⃗ S= r⃗−∇⃗ ϕ

Ray-tracing and amplification maps / caustics  reconstruction

μi=
mi

M 0

ratio of the mass of the star mi to the mass of the galaxy M 0



  

Practical result



  

In practice we observe a trajectory of the quasar in this map

Light curve

The larger the source 
The stronger is the attenuation
Of the peaks



  

Shalyapin etal. (2002)  

                                      Best model

standard accretion disk around a supermassive black hole

90% of the light is emitted by a region with size less than : 
 

The structure of the source (quasar) as infered from caustic crossing
                               (Finite source size effect)

1.2 10−2 pc
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