Some analytical calculations of caustics

Let's consider the elliptical isothermal potential for small values of the elliptical parameter η

$$\phi = \sqrt{(1-\eta)x^2 + (1+\eta)y^2} \simeq r \left(1 - \frac{\eta}{2}\cos(2\theta)\right)$$

Then the lens equation $\vec{r_s} = \vec{r} - \vec{\nabla} \phi$ Implies that:

$$\begin{cases} x_s = x - \frac{\partial \phi}{\partial x} \simeq r \cos(\theta) - \cos(\theta) + \frac{\eta}{4} \left(3\cos(\theta) - \cos(3\theta) \right) \\ y_s = y - \frac{\partial \phi}{\partial y} \simeq r \sin(\theta) - \sin(\theta) + \frac{\eta}{4} \left(-3\sin(\theta) - \sin(3\theta) \right) \end{cases}$$

The Jacobian matrix J relates the volume elements in different coordinates:

$$dx_{s}dy_{s} = |J|drd\theta \qquad J = \begin{pmatrix} \frac{\partial x_{s}}{\partial r} & \frac{\partial y_{s}}{\partial r} \\ \frac{\partial x_{s}}{\partial \theta} & \frac{\partial y_{s}}{\partial \theta} \end{pmatrix}$$

The the amplification A is:
$$\frac{d x d y}{d x_s d y_s} = \frac{r dr d \theta}{d x_s d y_s} = \frac{r dr d \theta}{d x_s d y_s} = \frac{r}{|J|}$$

As a consequence an infinite amplification corresponds to |J|=0

To first order in
$$\eta$$
, $|J| \simeq r - 1 - \frac{3}{2} \eta \cos(2\theta)$, Thus $|J| = 0 \Leftrightarrow r = 1 + \frac{3}{2} \eta \cos(2\theta)$

Thus for an infinite amplification the location of the images (the critical lines) to first order is an ellipse.

The caustic lines

Putting back the critical line equation and transforming to the lens plane Using the lens equation:

$$\begin{cases} x_{s} = x - \frac{\partial \phi}{\partial x} \approx r \cos(\theta) - \cos(\theta) + \frac{\eta}{4} [3\cos(\theta) - \cos(3\theta)] \\ y_{s} = y - \frac{\partial \phi}{\partial y} \approx r \sin(\theta) - \sin(\theta) + \frac{\eta}{4} [-3\sin(\theta) - \sin(3\theta)] \\ r = 1 + \frac{3}{2} \eta \cos(2\theta) \\ \text{Leading to:} \\ x_{s} \approx \frac{\eta}{2} [3\cos(\theta) + \cos(3\theta)] \\ y_{s} \approx \frac{\eta}{2} [-3\sin(\theta) + \sin(3\theta)] \\ \end{cases}$$