
  

           Gravitational lensing
From planets to clusters of galaxies

First lecture

Basic equations

First application: the point mass lens



  

     Gravitational lensing
          A short history

Newton realized that masses should deflect light

First Newtonian calculation Johann Soldner (1801) 



  

Einstein (1915) the correct deflection angle in general relativity 
is twice the previous Newtonian value

Zwicky (1937) realized that galaxies can split images  
With large enough separations to be observable



  

Refsdal (1964) propose to measure the Hubble constant 
By using time delays 
(trhough the variability of the lensed source)

Walsh, Carswell, & Weymann (1979) discover the  
double  image of a quasar QSO 0957+561

Paczynski (1986b) propose to monitor millions of star in 
LMC and SMC
Now gravitational microlensing can be observed

LMC

Milky Way



  

The era of gravitational lensing is opening

The first case of gravitational arc is there

Lynds & Petrosian (1986)

Galaxy cluster Abell 370



  

Lynds & Petrosian (1986)

The first gravitational arc



  

Soucail et al. (1987)

Galaxy cluster Abell 370



  

Bogdan Paczynski
Nature (1987)

Paczynski proposed that the arcs are the images of 
background galaxies which are strongly distorted and 
elongated by the gravitational lens effect of the 
foreground cluster. 

This model was confirmed when the first arc redshifts 
were measured and found to be greater than that of the 
clusters.



  

Soucail et al. (1987)
HST (2019)



  

     Gravitational lensing probes all astrophysical scales
                      A journey of increasing scale

From planets
To Galaxies

From Galaxies
To Galaxy groups

From Groups
To clusters of galaxies



  

What kind of information do we obtain from gravitational lensing ? 

Gravitational lensing offers a direct unbiased measure of the mass
                             Making maps of the mass distribution
                                      Dark matter mapping

 Lensing has an ability to resolve very fine structure – un-observable by other means

                                                     The structure of the lens 

                                                                 planets 

                                                      Dark matter substructures 

                                                   The structure of the source 

                                                         red giant star 

                                                      quasar accretion disk

 



  

Lensing offers a direct measure of mass visible or not

Direct reconstruction of mass

Lensing offers a direct measure of mass visible or not



  

         Lensing has an ability to resolve very fine structure

The structure of the lens: planets – Dark matter substructures 

 The structure of the source: red giant star - quasar accretion disk



  

What this course does not cover

Cosmological lensing

    Cosmic shear

    CMB lensing

    Galaxy-galaxy lensing

Martin Kilbinger: Cosmology with cosmic shear observations: a review

Lewis & Challinor : Weak gravitational lensing of the CMB

Some reviews



  

The basics of gravitational lensing

The fundamental scale

        Einstein ring

The various lensing regimes

           Strong lensing
            Weak lensing
       Intermediate regime



  

Lensing: bending of the light trajectory by a massive object

ᾱ

Source Lens Observer
M

For small deviations, general relativity gives: ᾱ=
4 GM

bc2

b

b Is the impact parameter

(see for instance Misner, Thorne & Wheeler or Schultz)



  

Lensing has a fundamental scale

Let’s consider a perfectly symmetrical situation

The lens, source and observer are perfectly aligned
In this case due to the symmetry all trajectories are
The same except for a rotation of the plane of the
trajectory

lenssource observer

 The image of the source is a full Circle 

 The radius of the circle is the

  Einstein radius: RE

RE



  

The Einstein ring

Source

Einstein ring

The image seen from earth



  

Estimating the Einstein radius

source lens observer

α

θE

DLD S

DLS=DS−DL D SθE=αDLS
(1)



  

ᾱ=
4 GM

c2b
with b=θE DL combined with DSθE=ᾱDLS

θE=√ 4GM

c2

DLS

D S DL

We obtain

The Einstein radius is: RE=θE DL=√ 4GM

c2

DLS DL

D S

source lens observer

ᾱ

θE

DLD S

DLS=D S−DL

b



  

Typical values of the Einstein radius

Star: θE≃1mas RE≃1 AU Unresolved blend

θE≃2arcsec RE≃30kpc

Galaxies: 

Cluster of galaxies: 

θE≃50arcsec RE≃0.5 Mpc



  

The Einstein radius and the distance between the lens and source

RE∝√
(D S−DL )DL

D S

u=
DL

DS

RE∝√u(1−u)D S= f (u)√D S

u=
DL

DS

RE∝√u(1−u)D S= f (u)√D S

f (u)

u
For a source at fixed distance the Einstein radius is maximal
When the lens lens is placed at mid-distance



  

The various lensing regimes

Strong lensing

 Weak lensing

Intermediate regime



  

Consequence of the fundamental scale: the various lensing regimes 

Extended source at the center of circularly symmetric lens: thick Einstein ring



  

Slightly mis-aligned source or not circularly symmetrical potential

Source mis-alignement 

RS⩽RE

RS

Broken ring: gravitational arcs Strong lensing 



  

Source far away from center of lens
  (a few times the Einstein radius)

Weak effect

     Weak distortion
A round source become
An ellipse

There is a statistical change in the
Ellipticity of background galaxies

               Weak-Lensing



  

Between the weak and strong lensing regime: intermediate regime

Variable elliptical distortion: some curvature

Strong-lensing 

Weak-lensing
RE

The position of the source defines the regime

RS⩽RE RS⩾RE



  

   General gravitational lensing in astrophysical context

                        

                            Basic equations

             

                 Full mathematical description



  

source lens observer

ᾱ

θ

DLD S

DLS=DS−DL

β

βD S+ᾱDLS=θD S

The lens equation

β=θ−ᾱ
DLS

D S

=θ−α

β=θ−α Reduced deflection angle α=ᾱ
DLS

D S
β=θ−α



  

         3D representation of the lens equation

D S

DL

Source plane
Lens plane

Observer

β⃗
θ⃗

Why we work in planes
Galaxies, star,...thickness
Is small with respect to the distances

β⃗=θ⃗−α⃗General lens equation in vector form



  

General distribution of lenses: planar approximation
The thin lens model

δS⩽D ; δL⩽D ; D=D S , DL

δL

DS

DL

Source plane
Lens plane

δS

Observer



  

         The vectors angle are equivalent to vectors in the plane

D S

DL

Source plane
Lens plane

Observer

β⃗
r⃗

r⃗ S
θ⃗

r⃗=θDL ; r⃗ s=βDL

β⃗=θ⃗−α⃗ r⃗ S= r⃗−⃗̂α



  

In the thin lens approximation the density  is projected density in the lens plane
Leading to a surface density 

z
projection

Σ(θ⃗) Is the projected surface density in the lens plane 

Σ(θ⃗)=∫ρ(θ⃗ , z )dz

The lens equation for a continuous distribution in the lens plane 

θ⃗

Note:      is related to the local coordinate in the lens plane: θ⃗ r⃗=θ⃗DL

Lens plane



  

Introducing       the mean surface density within the Einstein radius Σcr

Σcr=
c2 DS

4 πG DLS DL
RE

2
=

4GM
c2

DLS DL

D S

M=Σcr π RE
2

Distance in the lens plane

Σcr

RE

S
u

rf
a

ce
 d

e
n

si
ty

Below         no gravitational arcs

No strong lensing

Σcr



  

Deviation due to a point mass lens

ᾱ=
4 GM

bc2

α=ᾱ
DLS

D S

b=θDL α=
4 GM
c2

DLS

D S DL

1
θ

α⃗=
4 GM
c2

DLS

DS DL

θ⃗

|θ⃗|
2



  

The lens equation for a continuous distribution in the lens plane 

The deviation produced by a small element
of the lens is:

δ⃗ α∝Σ(θ⃗i)d
2
θi

θ⃗−θ⃗i

|⃗θ−θ⃗i|
2

θ⃗i
θ⃗

Source

Deviation due to 
a point mass lens

Weight due to 
local mass

Σ(θ⃗i)

Lens plane



  

α(θ⃗ )=∫ δ⃗α=
1
π∫LP

κ(θ⃗i)
θ⃗−θ⃗i

|θ⃗−θ⃗i|
2 d

2
θi

κ(θ⃗ )=
Σ(θ⃗ )
Σcr

We co-add the angular deviation for each local element

We introduce the normalized surface density (convergence) 

δ⃗α=
1
π κ(θ⃗i)d

2
θi

θ⃗−θ⃗i

|⃗θ−θ⃗i|
2

Then:



  

α(θ⃗ )=
1
π∫LP

κ(θ⃗i)
θ⃗−θ⃗i

|⃗θ−θ⃗i|
2 d

2
θi

ϕ(θ⃗)=
1
π∫LP

κ(θ⃗i) log (|θ⃗−θ⃗i|) d
2
θi

We introduce the potential

Then: α⃗=∇⃗ ϕ



  

β⃗=θ⃗−α⃗

Then finally the lens equation takes the simple form:

β⃗=θ⃗−∇⃗ ϕ

α⃗=∇⃗ ϕ

κ=
1
2
Δϕ

The lens equation describe a general change in coordinates from
the source coordinates (      ) to the lens coordinates (    ) β⃗ θ⃗

ϕ(θ⃗)=
1
π∫LP

κ(θ⃗i) log (|θ⃗−θ⃗i|) d
2
θi



  

β⃗

θ⃗

Source plane

Lens plane

Lensing is a coordinate re-mapping from the source plane to the lens plane

β⃗=θ⃗−∇⃗ ϕ



  

Additionally the coordinates change introduced by lensing
         Conserve the surface brightness of the source

           (see Misner, Thorne & Wheeler, or Schultz)

                The conservation of surface brightness, 
plus the coordinates transform provided by the lens equation 
          is a complete description of gravitational lensing

+ surface brightness conservation β⃗=θ⃗−∇⃗ ϕ



  

First application: point mass lens

Basic equations 

Amplification of the source
 
 Direct calculation
 Jacobian
 Total amplification
 Light curve
 Fundamental degeneracies

Astrometric effects

Basic equations
Amplitude of the effect



  

Lensing by a point mass lens

Moving the source induce a rotation of the plane
The plane rotates along the (O-L) line

S
L

O

S

L

S

S

Lensing operates in a plane

Consequence: the images are on the (L,S) line

Images



  

r

r S
We work along the (L,S) line:

L S Image

r S=βDL r=θDLFor convenience we use lens plane coordinates:  

The images are aligned with the (L,S) line
Moving the source rorates the line and images



  

r S=
rS
r E

; r=
r
r E

Re-normalization by the Einstein radius, 

Lens equation r S=r−
1
r

Lens equation r S=r−
r E

2

r



  

Lens equation r S=r−
1
r

Two solutions: r=
r s±√rs

2
+4

2

Two images of the source

Typical separation a few mas



  

Total amplification: sum of the flux of the two images
             (images usually not separable)

d rS

d r

r

r S

Amplification: A=
r
rS

d r
d r S

A=A1+A2

A=
r S

2+2

rS√r S
2
+4

r1,2=
r s±√rs

2
+4

2



  

                   Other method: lensing is a change in coordinates
The amplification is the change in the volume element in the coordinate transform
                     This is the determinant of the Jacobian matrix J

J=|
∂ xS

∂ x

∂ yS

∂ x
∂ xS

∂ y
∂ y s

∂ y
| xS=x−

x

r 2 ; y S= y−
y

r 2
J=

r 4−1

r 4

A=J−1 ; A→∞ r=1 Einstein circle=critical line

A=A1+A2=
1

|J1|
+

1

|J 2|
=

rS
2+2

rS √r S
2
+4



  

Typical microlensing amplification curve
          in astrophysical context 

A=
u2+2

u√u2+4

lens

source

u0

v⃗

u

u2=u0
2+v2 t 2

u0 Is the impact parameter

u≡r s



  

u2=u0
2+v2 t 2 A=

u2+2

u√u2+4
All length are in units of the Einstein radius

We measure: u0≡
u0

RE

; v≡
v
RE

=tE
−1

tE

RE

The crossing time:       is directly related to 

But the velocity is unknown 

And         does not relate directly to the mass since the distances are unknown 

RE=√ 4GM

c2

DLS DL

D S

Fundamental degeneracies



  

The first light curves
of microlensing events

Alcock etal. (1997)

(Galactic Bulge events)



  

Astrometric effects

The observable quantity: the shift between the source and centroid position

We don’t observe individual images
But a blend of 2 images

The astrometric effect is the shift of the centroid
of the image blend



  

Calculation of astrometric effects

ū=
u1 A1+u2 A2

A1+A2

=
u (u2+3)

u2
+2

The position of the images centroid

The observable quantity: the shift between the source and centroid position

Δ=|u−ū|=
u

2+u2

The two projected component of     are:Δ

Δξ=
t− t0

t E(2+u
2
)

Δη=
u0

(2+u2
)

lens

source

u0

v⃗

u

u2=u0
2+v2 t 2



  

Nucita etal.
 (2017)

u0 impact parameter

The astrometric effect may increase with 
Increasing Impact parameter
(Unlike the amplification)



  

Lensing by point mass lens:some interesting problems

The extended source problem: the source is not a point
The source has a finite size and surface brightness profile 

The moving observer: the effect of the earth orbital motion 



  

The extended source problem

Lens 

Source 

u0

V⃗

u

u2=( x+V t )2+( y−u0)
2

δ A I=ρS(x , y )A (u)dxdyρS( x , y )

AT=∫ δ A I=∫ρS (x , y) A (u)dxdy
x

y



  

The extended source problem

AT=∫ρ(x , y )A (u)dxdy

No real singularity: constant circular area at center in polar coordinates

A0→∫0

R √u2
+2

u√u2
+4

udu

A(u)=
u2+2

u√u2+4



  

Write a numerical code to integrate over the source

Constant brightness

Limb darkening for stars (color effects ?)

General method to reconstruct the density profile 
of the source?

Illustration of the effect



  

A first case showing finite source size effect

Alcock etal. (1997)



  

Other interesting problem for point mass lenses

The effect of the earth orbital motion

Parallax effect for the longer microlensing events

Earth

Lens

Source

The earth motion change the line of sight and the impact parameter: estimate the effect



  

The first parallax event

Alcock etal. (1995)

continuous line: fit with parallax dotted line: fit without parallax

The solution with parallax

Velocity: 75 ± 5 km s-1

Dlens = 1.7+1.1−0.7 kpc

angle of 28° ± 4° 

M = 1.3+1.3−0.6M☉
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