Lensing in cosmology

First case: lensing of a quasar by a galaxy

The Einstein cross: QSO 2337+0305

Distances in cosmology

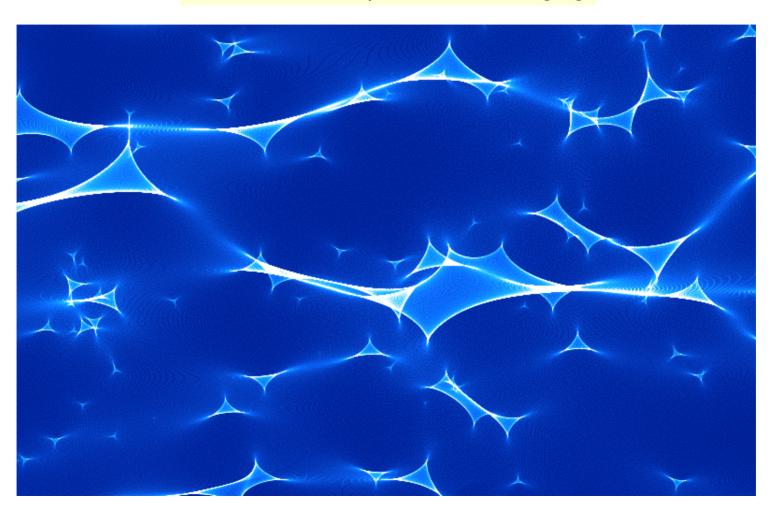
Images and caustics in the isothermal potential

The mass-sheet degeneracy

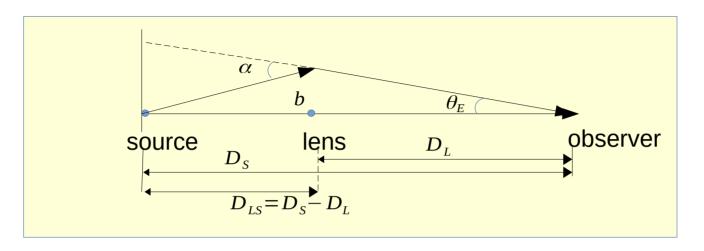
Time delays

Microlensing variability

This time the complexity will increase We will see multiple caustics merging



The lens equation in cosmology



$$D_I \theta = d \rightarrow D_I = \frac{d}{\theta}$$
 angular distances

In the weak field limit and for small deviations
The lens equation is still valid if we use the cosmological angular distances

See for instance Naryan & Bartelmann (2008)

Distances in cosmology

$$D_C = \frac{c}{H_0} \int \frac{dz}{E(z)} \qquad H(z) = H_0 E(z)$$

$$H(z) = H_0 E(z)$$

$$\text{Comoving angular distance: } D_M = \left\{ \begin{array}{ll} K^{\frac{-1}{2}} \sin \left(K^{\frac{1}{2}} D_C\right) & \text{for } K \! > \! 0 \\ D_C & \text{for } K \! = \! 0 \\ -K^{\frac{-1}{2}} \sinh \left(-K^{\frac{1}{2}} D_C\right) & \text{for } K \! < \! 0 \end{array} \right.$$
 curvature: K
$$\Omega_K = -\left(\frac{c}{H_0}\right)^2 K$$

Angular distance: $D_A = \frac{D_M}{1+z}$

Do not subtract angular distances: use comoving angular distance then normalize using redshift

Distances in cosmology

$$D_C = \frac{c}{H_0} \int \frac{dz}{E(z)} \qquad H(z) = H_0 E(z)$$

$$H(z) = H_0 E(z)$$

$$\text{Comoving angular distance: } D_M = \left\{ \begin{array}{ll} K^{\frac{-1}{2}} \sin \left(K^{\frac{1}{2}} D_C\right) & \text{for } K \! > \! 0 \\ D_C & \text{for } K \! = \! 0 \\ -K^{\frac{-1}{2}} \sinh \left(-K^{\frac{1}{2}} D_C\right) & \text{for } K \! < \! 0 \end{array} \right.$$
 curvature: K
$$\Omega_K = -\left(\frac{c}{H_0}\right)^2 K$$

Angular distance: $D_A = \frac{D_M}{1+z}$

Do not subtract angular distances: use comoving angular distance then normalize using redshift

An interesting cosmological situation The Einstein cross: QSO 2337+0305

A distant quasar source: z=1.695

(light travel time: 9.846 Gyr)

A nearby galactic lens: z=0.0395

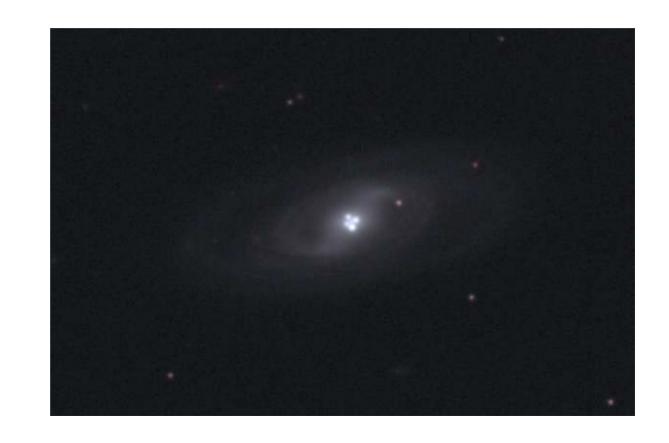
(light travel time: 0.540 Gyr)

(discovered by John Huchra in 1985)

The elliptical lens

The Einstein cross

QSO 2237+0305 (HST)



A simple model: elliptical isothermal potential

$$\phi = \sqrt{(1-\eta)x^2 + (1+\eta)y^2}$$
 for small ellipticity $\phi \approx r \left(1 - \frac{\eta}{2}\cos 2\theta\right)$

The lens equation:
$$\vec{r_s} = \vec{r} - \vec{\nabla} \phi$$

With: $dr = r - 1$
 $\vec{r_s} = \vec{r} - \vec{\nabla} \phi$
 $\vec{r_s} = (dr + \frac{\eta}{2} \cos 2\theta) \quad \vec{u_r} - \eta \sin 2\theta \quad \vec{u_\theta}$

(to first order in η)

A simple model: elliptical isothermal potential

Circular source with impact parameter $ec{r_0}$ and radius R_0

$$\vec{r}_0$$
 \vec{R}_S
 \vec{R}_S

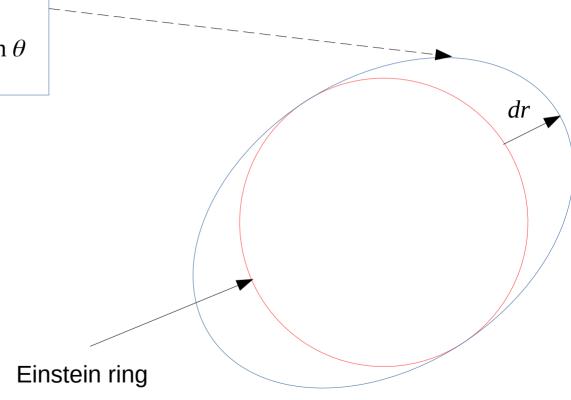
$$\vec{r}_{S} = (dr + \frac{\eta}{2}\cos 2\theta) \quad \vec{u}_{r} - \eta\sin 2\theta \quad \vec{u}_{\theta}$$

$$\vec{r}_{s} = \vec{R}_{s} + \vec{r}_{0}$$
 ; $|\vec{R}_{s}| = R_{0}$

$$\vec{r_0} = (x_0, y_0)$$
 $dr = \frac{\eta}{2} \cos 2\theta - x_0 \cos \theta - y_0 \sin \theta \pm \sqrt{R_0^2 - (\eta \sin 2\theta - x_0 \sin \theta + y_0 \cos \theta)^2}$

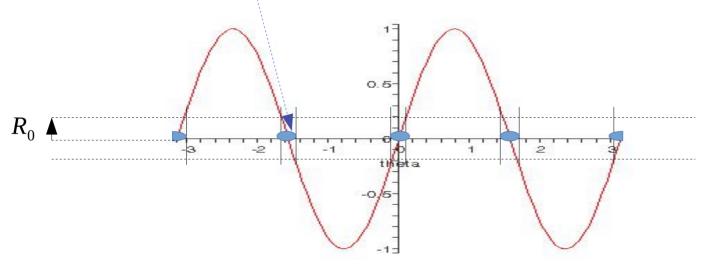
Radial position of the images

$$dr = -\frac{\eta}{2}\cos 2\theta - x_0\cos\theta - y_0\sin\theta$$



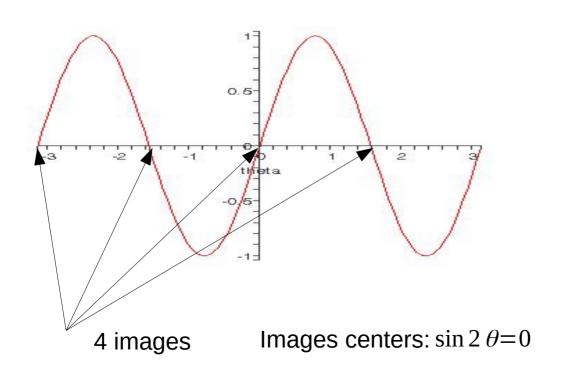
$$dr = \frac{\eta}{2}\cos 2\theta - x_0\cos \theta - y_0\sin \theta \pm \sqrt{R_0^2 - \left(\eta\sin 2\theta - x_0\sin \theta + y_0\cos \theta\right)^2}$$

Image forms if: $|df_0| = |\eta \sin 2\theta - x_0 \sin \theta + y_0 \cos \theta| < R_0$



Here represented for: $x_0 = 0$; $y_0 = 0$; $df_0 = |\eta \sin 2\theta|$

Source at center of elliptical lens,



Source near center Of elliptical lens

Caustics for the isothermal potential

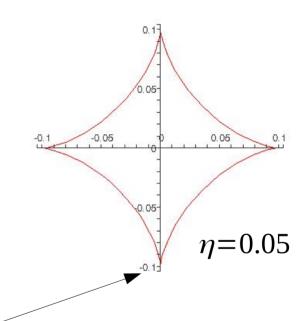
$$\phi = \sqrt{(1-\eta)x^2 + (1+\eta)y^2} \qquad x_S = x - \frac{\partial \phi}{\partial x} \qquad y_S = y - \frac{\partial \phi}{\partial y}$$

$$J = \frac{\partial x_s}{\partial x} \frac{\partial y_s}{\partial y} - \frac{\partial x_s}{\partial y} \frac{\partial y_s}{\partial x} \simeq \frac{r-1}{r} - \frac{3\cos 2\theta}{2r} \eta$$
 To first order in η

Critical lines:
$$J=0 \rightarrow r=1+\frac{3}{2}\eta\cos 2\theta$$

We transform the equation for the critical lines to the source plane by using the lens equation

Caustics:
$$\begin{cases} xs = \left(\frac{3}{2}\cos\theta + \frac{1}{2}\cos3\theta\right)\eta\\ ys = \left(-\frac{3}{2}\sin\theta + \frac{1}{2}\sin3\theta\right)\eta \end{cases}$$

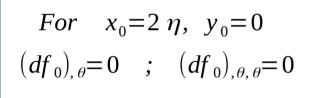


The amplitude of the caustics diagram is: 2η

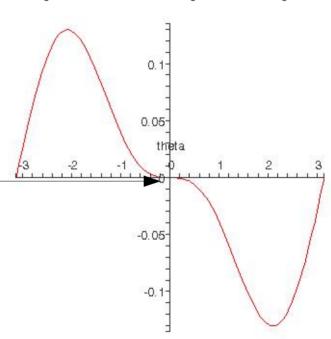
Image equation

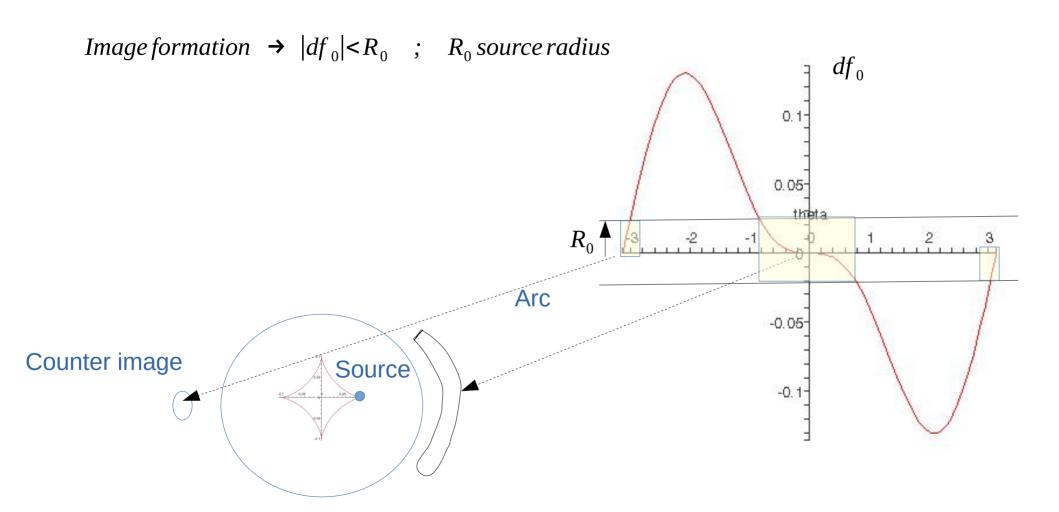
$$dr = \frac{\eta}{2}\cos 2\theta - x_0\cos\theta \pm \sqrt{R_0^2 - df_0^2}$$

 $df_0 = \eta \sin 2\theta - x_0 \sin \theta + y_0 \cos \theta$



Cusp caustic=order 3





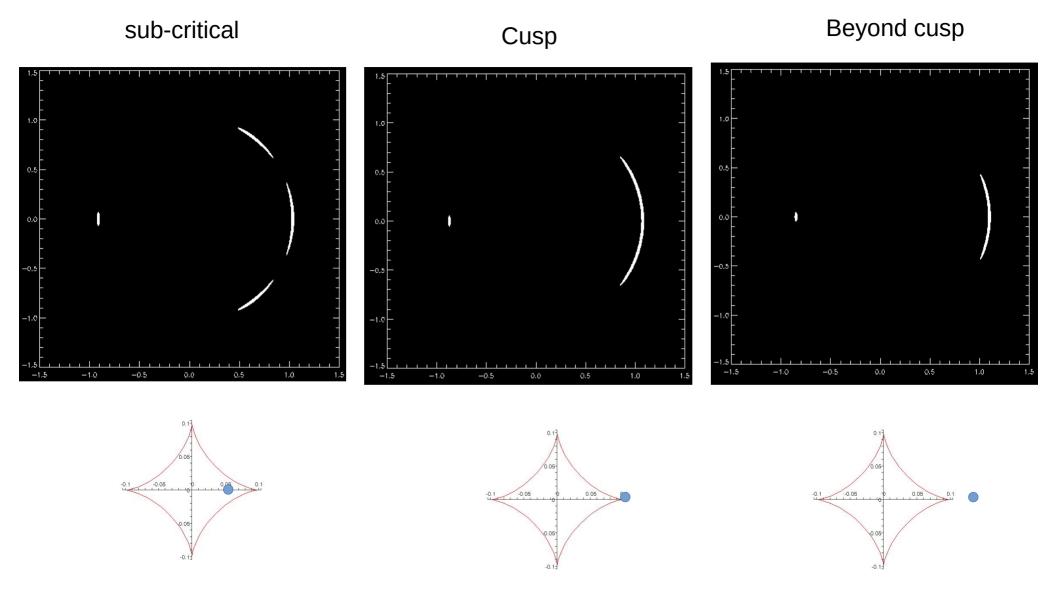
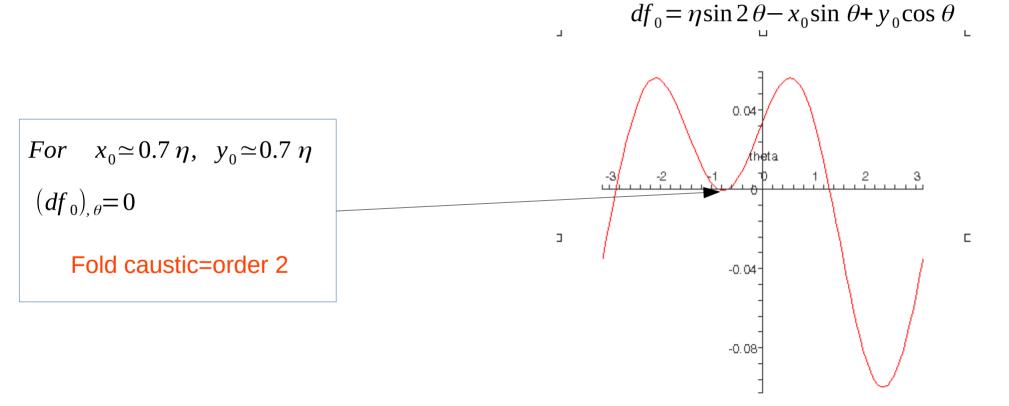
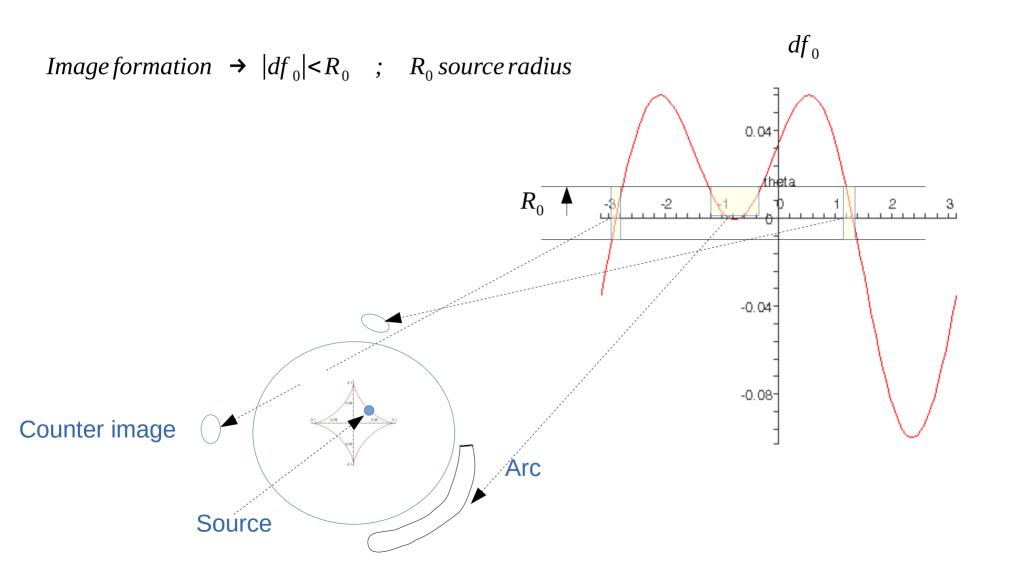
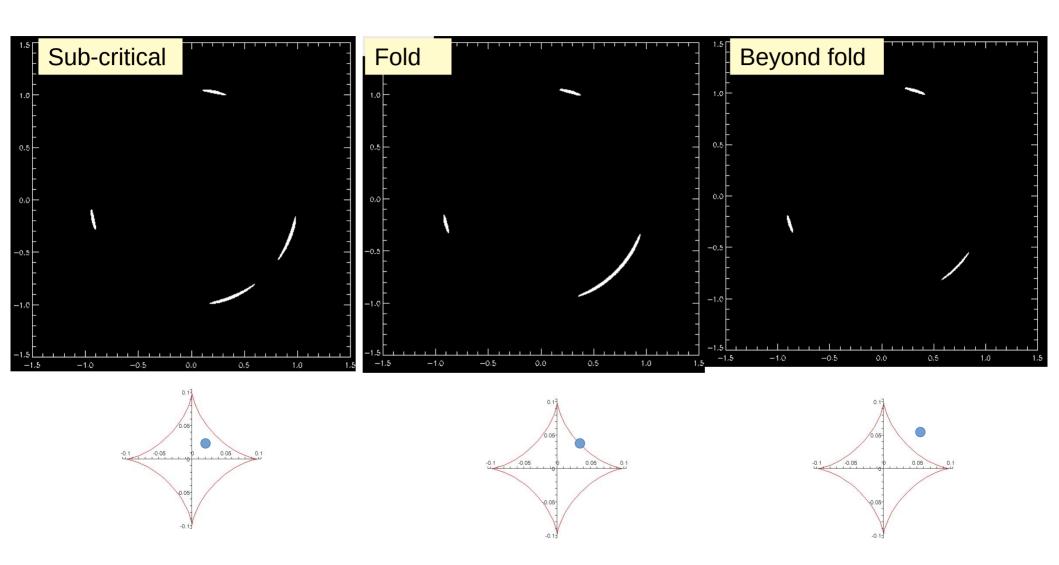


Image equation

$$dr = \frac{\eta}{2}\cos 2\theta - x_0\cos \theta - y_0\sin(\theta) \pm \sqrt{R_0^2 - df_0^2}$$







The mass sheet degeneracy

Let introduce a new surface density $\widetilde{\kappa}$

It relates to the initial surface density κ by:

$$\kappa = (1 - \lambda) \widetilde{\kappa} + \lambda$$

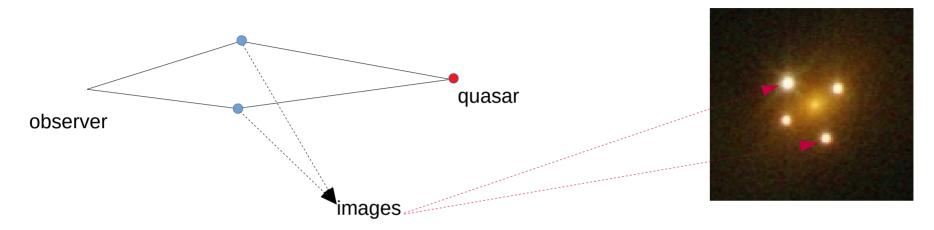
With:
$$\kappa = \frac{1}{2} \Delta \phi$$
 and: $\tilde{\kappa} = \frac{1}{2} \Delta \tilde{\phi}$ \longrightarrow $\phi = (1 - \lambda)\tilde{\phi} + \frac{1}{2} \lambda (x^2 + y^2)$

(take laplacian and check it is working)

The lens equation with the new surface density $\widetilde{\kappa}$ Is equivalent to the former lens equation If we re-scale the source coordinates the two equations are equivalent

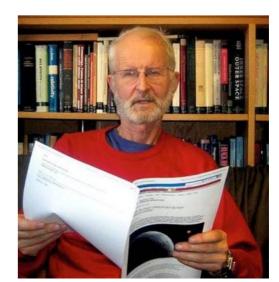
This is known as the mass-sheet degeneracy (adding a constant density) Leads to a re-scaling of both lens and source coordinates

Time delays



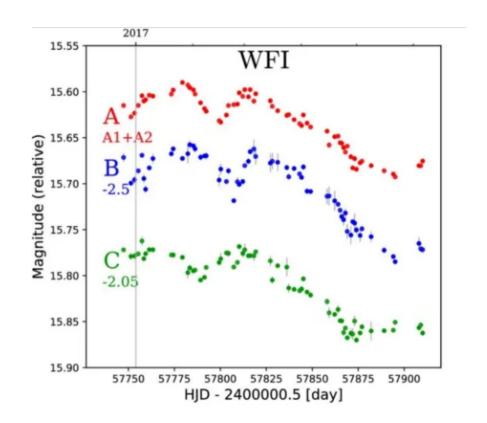
Basic idea: The path of light for each image is different Consequence: a time delay between the images

Refsdal (1964)



In practice the source: quasar Is variable

Thus time delays can be observed



The time delay

(for spatially flat universe or small curvature)

$$\tau = \frac{(1+z_L)}{c} \frac{D_L D_S}{D_{LS}} \left(\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right) \qquad d_I = \left(\frac{c}{H_0} \right)^{-1} D_I \qquad \qquad \blacktriangleright \qquad D_C = \frac{c}{H_0} \int \frac{dz}{E(z)}$$

$$\tau = \frac{(1+z_L)}{H_0} \frac{d_L d_S}{d_{LS}} \left(\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right) \qquad d_I : \text{ dimensionless distances}$$

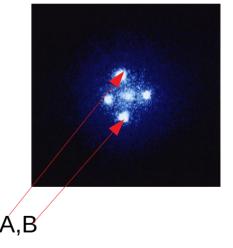
The first thing to note is that the time delay is proportional to: H_0^{-1}

Thus measuring the time delay is direct measurement of $H_{
m c}$

In practice what we measure is the differential time delay between the images

$$\tau = \frac{(1+z_L)}{H_0} \frac{d_L d_S}{d_{LS}} \left(\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right) \longrightarrow \tau(\theta, \beta) = T_d \left(\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right)$$

This is clearly model dependent: one needs to estimate the potential



For a singular isothermal sphere: $\Delta \tau_{A,B} \propto \left(R_A^2 - R_B^2\right)$

Kochaneck & Schechter (2004)

Images positions

How to interpret the time delay

First it is nothing really new...

If we minimize the time delay with respect to $\bar{\theta}$

We obtain the lens equation:

$$\tau = \frac{(1+z_L)}{H_0} \frac{d_L d_S}{d_{LS}} \left(\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right)$$

$$\vec{\beta} = \vec{\theta} - \vec{\nabla} (\vec{\theta})$$

The formulation: time delay or lens equation Are seen as equivalent

The physical interpretation of the time delay

$$\tau = \frac{(1+z_L)}{H_0} \frac{d_L d_S}{d_{LS}} \left(\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta})\right)$$
 Gravitational delay (the Shapiro delay),

$$\delta_{1} = a_{1} - D_{LS} \simeq \frac{1}{2} \frac{b^{2}}{D_{LS}} \qquad \delta_{2} = a_{2} - D_{L} \simeq \frac{1}{2} \frac{b^{2}}{D_{L}}$$

$$b = D_{L}(\theta - \beta)$$

$$\delta = \delta_{1} + \delta_{2} = \frac{D_{L}D_{S}}{D_{LS}}(\theta - \beta)^{2}$$

$$d_{I} = \left(\frac{c}{H_{0}}\right)^{-1}D_{I} \qquad \tau \equiv \frac{\delta}{c} \qquad \tau = \frac{(1 + z_{L})}{H_{0}} \frac{d_{L}d_{S}}{d_{LS}} \left(\frac{1}{2}(\vec{\theta} - \vec{\beta})^{2} - \psi(\vec{\theta})\right)$$

With the appropriate scale factor we recover the geometric time delay

The Shapiro time delay

First predicted in 1964 by Irwin Shapiro

For a nearly static and weak field

The time delay due to the gravitational field

is directly proportional to the Newtonian potential

$$\tau = \frac{(1+z_L)}{H_0} \frac{d_L d_S}{d_{LS}} \left(\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right)$$

How do time delay look like in practice?

Problem with time delay estimations

Some practical examples of light curves of images for a variety of lenses

Problem with time delay estimations

The time delay is model dependent

Any model of the potential or surface density is affected by the mass-sheet degeneracy

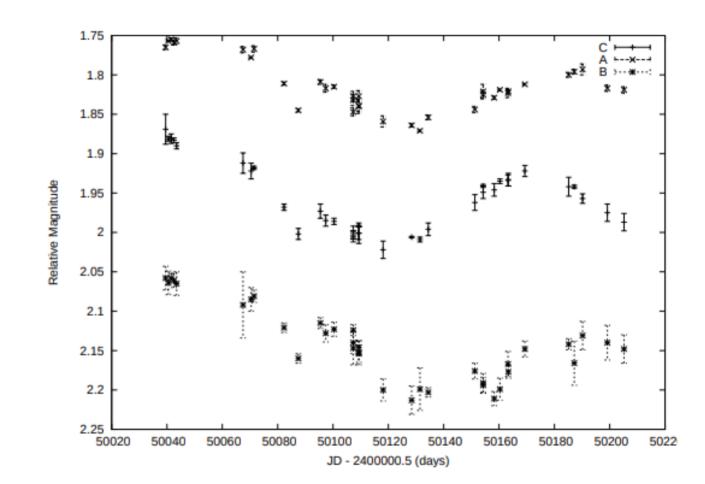
It is essential to find a method to deal with the mass-sheet degeneracy

Treu & Koopmans (2002) propose to use stellar kinematics

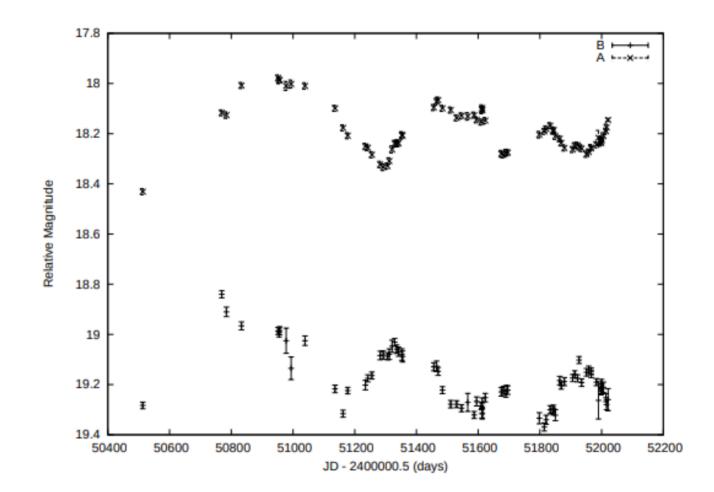
Keeton & Zabludoff (2004) use the environment of the lens (galaxy counts, weak lensing)

Some practical examples of light curves of images for a variety of lenses

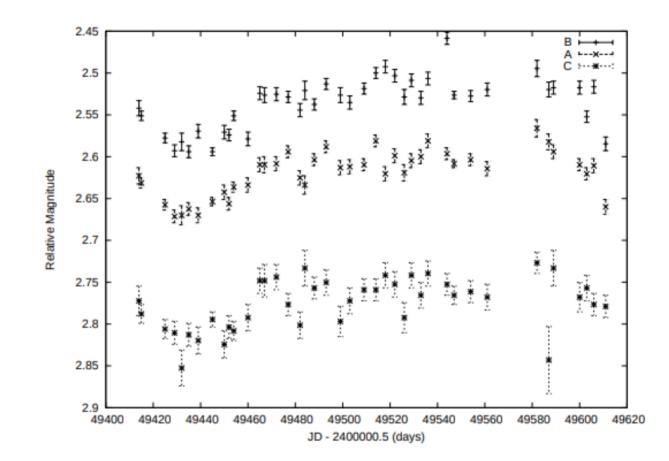
A short review from the literature



PG 1115+080



RX J0911+0551

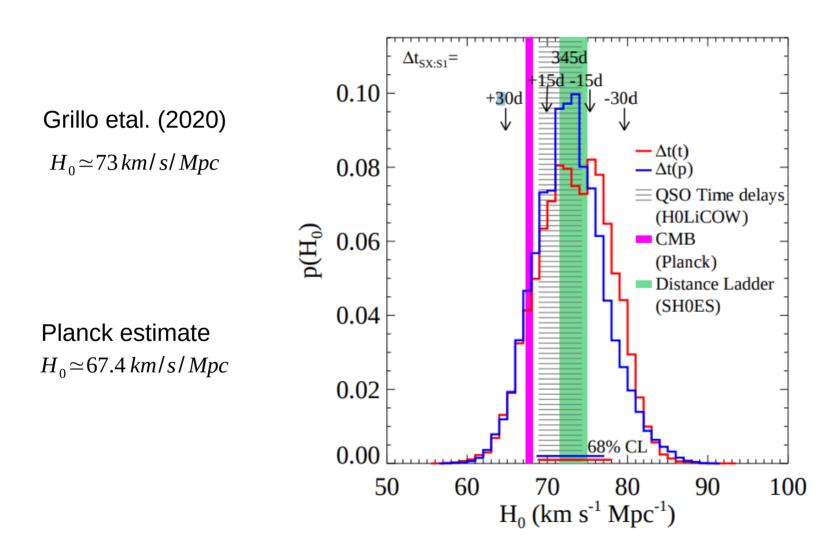


JVAS B1422+231

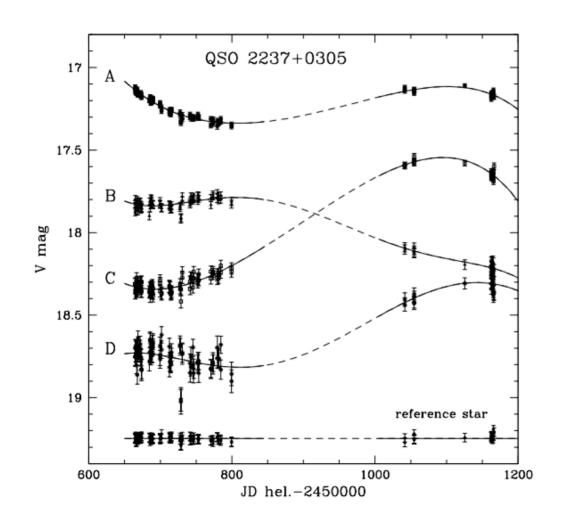
	System
	JVAS B0218+
	SBS 0909+523
Compilation For 11 systems	RX J0911+055
	FBQS J0951+
	HE 1104-1805
	PG 1115+080
Eulaers	JVAS B1422+
(2012)	SBS 1520+530
	CLASS B1600

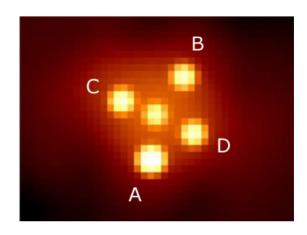
System	Our Results		Published Values	Reference
JVAS B0218+357	$\Delta t_{AB} = 9.9^{+4.0}_{-0.9}$		$\Delta t_{AB} = 10.1^{+1.5}_{-1.6}$	Cohen et al. (2000)
	or		$\Delta t_{AB} = 12 \pm 3$	Corbett et al. (1996)
	$\Delta t_{AB} = 11.8 \pm 2.3$		$\Delta t_{AB} = 10.5 \pm 0.4$	Biggs et al. (1999)
SBS 0909+523	unreliable		$\Delta t_{BA} = 49 \pm 6$	Goicoechea et al. (2008)
			$\Delta t_{BA} = 45^{+11}_{-1}$	Ullán et al. (2006)
RX J0911+0551	2 solutions:		$\Delta t_{BA} = 150 \pm 6$	Burud (2001)
	$\Delta t_{BA} \sim 146 \text{ or } \sim 157$		$\Delta t_{BA} = 146 \pm 4$	Hjorth et al. (2002)
FBQS J0951+2635	unreliable		$\Delta t_{AB} = 16 \pm 2$	Jakobsson et al. (2005)
HE 1104-1805			$\Delta t_{BA} = 152^{+2.8}_{-3.0}$	Poindexter et al. (2007)
	impossible to distinguish	($\Delta t_{BA} = 161 \pm 7$	Ofek & Maoz (2003)
	but identical	{	$\Delta t_{BA} = 157 \pm 10$	Wyrzykowski et al. (2003)
	within error bars	($\Delta t_{BA} = 162.2^{+6.3}_{-5.9}$	Morgan et al. (2008a)
PG 1115+080	dependent on method		$\Delta t_{CA} \sim 9.4$	Schechter et al. (1997)
			$\Delta t_{CB} = 23.7 \pm 3.4$	Schechter et al. (1997)
			$\Delta t_{CB} = 25.0^{+3.3}_{-3.8}$	Barkana (1997)
JVAS B1422+231	contradictory results		$\Delta t_{BA} = 1.5 \pm 1.4$	Patnaik & Narasimha (2001)
	between methods:		$\Delta t_{AC} = 7.6 \pm 2.5$	
	BAC or CAB?		$\Delta t_{BC} = 8.2 \pm 2.0$	
SBS 1520+530	$\Delta t_{AB} = 125.8 \pm 2.1$		$\Delta t_{AB} = 130 \pm 3$	Burud et al. (2002c)
			$\Delta t_{AB}=130.5\pm2.9$	Gaynullina et al. (2005b)
CLASS B1600+434	$\Delta t_{AB} = 47.8 \pm 1.2$		$\Delta t_{AB} = 51 \pm 4$	Burud et al. (2000)
CLASS B1608+656	$\Delta t_{BA} = 31.6 \pm 1.5$		$\Delta t_{BA} = 31.5^{+2}_{-1}$	Fassnacht et al. (2002)
	$\Delta t_{BC} = 35.7 \pm 1.4$		$\Delta t_{BC} = 36.0 \pm 1.5$	
	$\Delta t_{BD} = 77.5 \pm 2.2$		$\Delta t_{BD} = 77.0^{+2}_{-1}$	
HE 2149-2745	unreliable		$\Delta t_{AB} = 103 \pm 12$	Burud et al. (2002a)

Grillo etal. (2018)



Why do we observe un-correlated variability of the images of QSO 2337+0305?



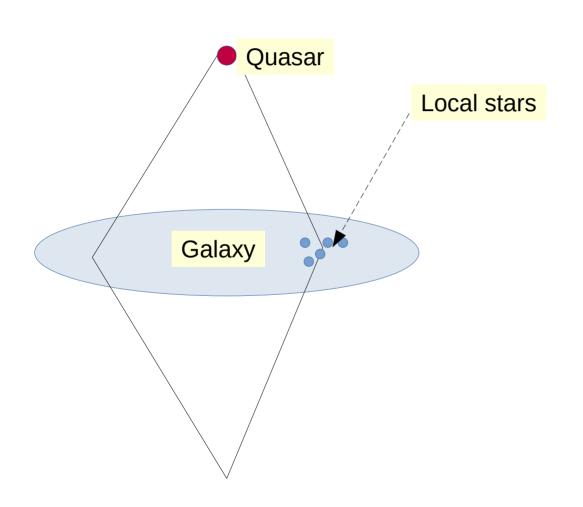


Typical time scale of variations ~ a few months to years

Typical Einstein radius crossing time For a solar mass star in the galaxy A few hundred days

Wozniak etal. (2000)

What is going on?



The deflection angle is perturbated By the field of the local stars

Typical Numbers

The main galaxy:
$$M \simeq 10^{10} \, solar \, mass$$
 ; $R_E \propto \sqrt{M} \rightarrow R_E \simeq 30 \, Kpc$

Solar mass star:
$$R_E \simeq \sqrt{10^{-10}} \times 30 \, kpc \simeq 0.3 \, pc$$

Density in the solar neighborhood: $0.08 \text{ solar mass/pc}^3$

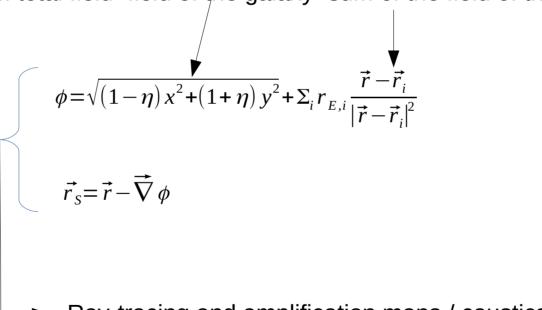
Projected density in the solar neighborhood: $0.08 \times scale \ height \simeq 0.08 \times 150 \simeq 12 \ solar \ mass / pc^2$

Mean distance between stars:
$$\sqrt{\frac{1}{12}} \simeq \frac{0.29 \, pc}{1.29 \, pc}$$

Perturbation by stars very likely

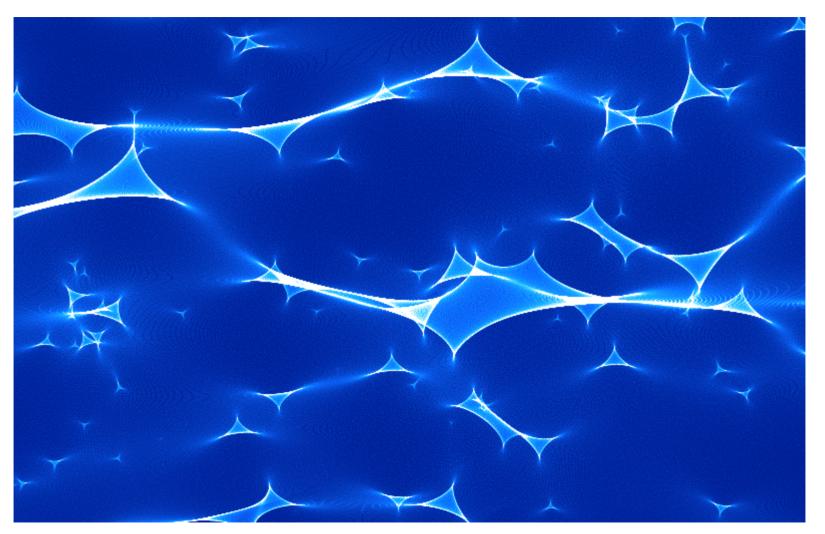
Use ray tracing to reconstruction the amplification map And the local caustics due to the stars

Local equations: total field=field of the galaxy+sum of the field of the local stars

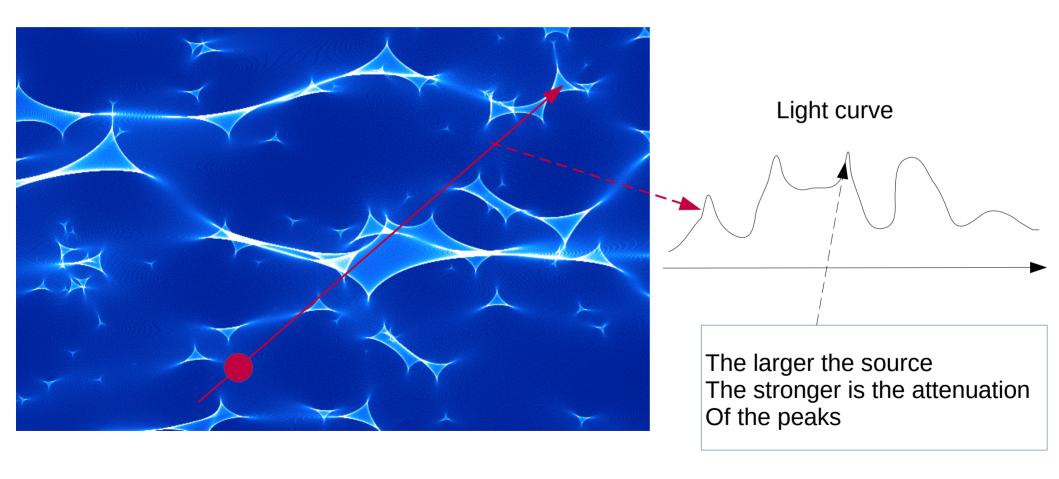


Ray-tracing and amplification maps / caustics reconstruction

Practical result



In practice we observe a trajectory of the quasar in this map



The structure of the source (quasar) as infered from caustic crossing (Finite source size effect)

Shalyapin etal. (2002)

Best model

standard accretion disk around a supermassive black hole

90% of the light is emitted by a region with size less than :1.2 $10^{-2} pc$