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Reconstructing strong gravitational lenses

r⃗ s= r⃗−∇⃗ ϕ

We observe different images of the source
All images must remap to the same source

This gives constraints on the potential:

Main problem: the potential models are degenerates

In the litterature we find NFW, cored-isothermal, power-law
models,…,all these models fit the data well



  

Reconstructing strong gravitational lenses

                          As a consequence

Possible models for a lens belong to large family of models

What are the common properties of all these models ?

What kind of non- degenerate information can we extract ?
  



  

The problem is related to the nature of gravitational arcs
                 What are gravitational arcs ?  

Obviously gravitational arcs are some
Perturbation of the Einstein ring situation

The source is slightly off-centered
The potential deviates from circular symmetry



  

First perturbation of the perfect ring situation
              an off  centered source
        In a circularly symmetric potential



  

Elliptical potential

Second perturbation of the perfect ring situation
                     a centered source
        In a non-circularly symmetric potential



  

 The general situation is a combination of both type of perturbations

  I)   Of  centering of the source

  II)  Non circular perturbation of the potential



  

Thus we should write a perturbative theory of strong lensing 

The perturbative fields should be the proper non-degenrate quantities

But a perturbative theory of strong lensing looks un-tractable  
                              For a simple reason 



  

Main problem: strong lensing is highly non-linear

1% perturbator

But the non-linearity is in the angular dimension only: 
is a perturbative theory possible ?



  

Solving the problem

An effective perurbative theory of strong gravitational lensing 

The singular perturbative solution



  

A perturbative approach is possible
if the un-perturbed situation is a singularity 

A point is at the center
Of a circularly symmetric
potential 

There is an infinity
Of image of the point
On Einstein circle



  

The perturbative situation

The point is not at the center
The potential is not
 circularly symmetric

There is always
An un-perturbed point
On the circle
Close to the perturbed point
For any 

θ

θ



  

This solution is the singular perturbative solution

We can find an un-perturbed point for any 
The perturbation is only in the radial dimension 

θ

ϕ(r ,θ)=ϕ0(r )+ϵψ(r ,θ)

r=1+ϵ dr

r⃗ s=ϵ r⃗S

We expand only in dr
from the unit Einstein circle

For convenience the un-perturbed Einstein circle has radius unity



  

r⃗ s= r⃗−∇⃗ ϕ=(r−
∂ϕ

∂r
) u⃗r−

1
r

∂ ϕ
∂ θ
u⃗θ

ϕ(r ,θ)=ϕ0(r )+ϵψ(r ,θ)

r=1+ϵ dr

ϕ0(r)≃ϕ0(1)+ϕ0
'
(1)ϵdr+

1
2

ϕ0
' '
(1)(ϵdr )2

∂ r≡∂ϵ drWith:

r⃗ s=(1−ϕ0
'
(1)) u⃗r+((1−ϕ0

' '
(1))dr−f 1(θ))u⃗r−

d f 0

d θ
u⃗θ

ψ(r ,θ)≃ϵ ( f 0(θ)+ f 1(θ)ϵdr )

ϕ(r ,θ)≃ϕ0(1)+ϕ0
'
(1)ϵdr+

1
2

ϕ0
' '
(1)(ϵdr )2

+ϵ (f 0(θ)+ f 1(θ)ϵ dr )



  

r⃗ s=(1−ϕ0
'
(1)) u⃗r+((1−ϕ0

' '
(1))dr−f 1(θ))u⃗r−

d f 0

d θ
u⃗θ

r⃗ s=((1−ϕ0
' '
(1))dr−f 1(θ))u⃗r−

d f 0

d θ
u⃗θ

                      =0
Unperturbed unit 
Einstein circle

r⃗ S=(κ2dr− f 1) u⃗r−
df 0

d θ
u⃗θκ2=1−[ d

2
ϕ0

dr2 ]
r=1



  

The singular perturbative theory

ϕ(r ,θ)=ϕ0(r )+ϵψ(r ,θ) r=1+ϵ dr r⃗ s=ϵ r⃗S

r⃗ s= r⃗−∇⃗ ϕ
r⃗ S=(κ2dr− f 1) u⃗r−

df 0

d θ
u⃗θ

f 1=[ d ψ

dr ] ; f 0=ψ(1 ,θ) ; κ2=1−[ d
2
ϕ0

dr2 ]
r=1

Alard (2007) κ2 Mass-sheet degeneracy



  

Let consider a source with an impact parameter

r⃗0

r⃗ S

r⃗0

r⃗ s r⃗ S= r⃗0+r⃗ s r⃗0 =
x0

y0

r⃗ s=(κ2dr−
~
f 1)u⃗r−

d
~
f 0

dθ
u⃗θ

~
f i=f i+x0 cos(θ)+ y0sin (θ)With:



  Alard (2007)

For a circular source

κ2dr=
~
f 1±√r0

2
−
d
~
f 0

dθ

2

The 2 perturbative fields have strong physical meaning

~
f 1 Images positions (deviation from the circle)

d
~
f 0

d θ
Where the images forms (small values of the field)

r⃗ s=(κ2dr−
~
f 1)u⃗r−

d
~
f 0

dθ
u⃗θ ; |r s|

2
=r0

2



  

f 1

d f 0

d θ

θ
Local minima

Local crossing

Physical meaning of the fields
In the singular perturbative expansion



  

Exemple of reconstruction using the singular perturbative method
                   Presentation of the of the lens systems

Isothermal lens source in sub-critical regime Same lens perturbed by 1% point mass 



  

Reconstruction for the isothermal potential



  

Same lens perturbed by 1% point mass



  

Image formation
Isothermal case

d f 0

d θ



  

Image formation
   Perturbed

d f 0

d θ



  

Equation for caustics

J∝
∂ xs
∂r

∂ y s
∂θ

−
∂ xs
∂θ

∂ ys
∂r

=0r⃗ s=(κ2dr−
~
f 1)u⃗r−

d
~
f 0

dθ
u⃗θ

Critical lines: dr=
1
κ2 [ f 1+

d 2 f 0

dθ2 ]

Caustics lines:

xS=
d2 f 0

d θ
2 cosθ+

d f 0

d θ
sinθ

y S=
d2 f 0

d θ
2 sinθ−

d f 0

d θ
cos θ



  

Potential iso-contours

ϕ(r ,θ)=ϕ0(r )+ϵ f 0(θ)+ϵ f 1(θ)(r−1)=C

ri=1+ϵ dr iPotential iso-contour near unit Einstein circle

ϕ(r ,θ)=ϕ0(r )+ϵ f 0(θ)+ϵ f 1(θ)(r−1)=C

To first order leads to: dr i=− f 0



  

The Fourier series expansion of the fields
And the multipole expansion:
Inner and outer contribution can be separated

Multipole expansion

Knowing the perturbative field the multipole expansion
Can be reconstructed

It allows to separate the inner terms

And the outer terms

an , bn
cn , dn



  

How does the perturbative fields expansion works with real halo’s ? 

Here we present some comparison between the contours 
Reconstructed for the perturbative method and real ray tracing



  

The perturbative expansion compared to ray tracing
in numerical simulations (Peirani etal. 2008)



  

Some more comparisons



  

Some example of reconstruction
With the singular perturbative method

1) single galaxy in perturbed environment

2) small group of galaxies

3) The cosmic horseshoe lens



  

Alard (2010)

The lens system and the reconstruction
Of the 2 fields



  

Image and source reconstruction

Alard (2010)



  

The reconstruction of the potential iso-contours

Inner iso-contour

outer iso-contourAlard (2010)



  

Alard (2009)

Fields reconstruction for the lens



  

Image and source reconstruction



  

Potential reconstruction

Density reconstruction

In this small cluster mass does
Not follow light

Alard (2009)



  

Reconstruction of the cosmic horseshoe

Original (HST data) Reconstructed 



  Subtraction: original-reconstruction Comparison of details 
original/reconstruction



  

Solution for the fields Potential iso-contours

Inner Outer

Total

f 1

d f 0

d θ



  

Source reconstruction

Source/caustic configuration



  

Very important assets of the perturbative analysis

         Universal approach for all lenses

         Universal modelling and parameters

                         Consequence:

      It makes statistical analysis possible



  

The singular perturbative method
        A statistical approach

As an illustration: the statistical signature of substructures

The presence of substructure in the lens near the Einstein ring
produce local perturbations

These local perturbations have specific statistical signature
in the singular perturbative theory

In particular they stand up as higher order terms in the Fourier
expansion of the fields.



  

The singular perturbative method
        A statistical approach

Analytical calculations of the perturbation due to a point mass

Perturbation fields due to a substructure

The effect on the fields as a function of the distance of the substructure

Alard (2008)



  

The statistical signature of substructure
Alard (2008)

Power-law modelling of the Fourier expansion
 Coefficients as function of the substructure position Mean ratio of the 2 fields Fourier coefficients

The substructure signature is a long tail at higher order in the Fourier expansion
With distinct nature between the 2 fields.



  

The Fourier series expansion of the fields
Is rich in statistical information

Multipole expansion
The Fourier expansion of the fields contains all the details
Of the multipole expansion on the Einstein circle



  

Reconstruction of the 2 fields for many lenses

Fourier decomposition of the fields

Full statistic of the multipole expansion

Signature from complex halo geometry

Substructures

Light-mass offsets

Mass without light counterparts

New results (rings, caustics, filaments, holes,...)

The statistical analysis of a large number of lenses
                             (EUCLID)



  

Some practical example of the statistical information
Available in the perturbative fields expansion

3 halo’s from Peirani etal. (2008)
analyzed in detail



  

The perturbative expansion compared to ray tracing
in numerical simulations (Peirani etal. 2008)



  

The perturbative expansion compared to ray tracing
in numerical simulations: the shape of the perturbative fields



  

The power spectrum of
 the perturbative fields expansion

For various halo’s



  

When a large set of lens is available It will be possible to build a statistical analysis
of the perturbative fields

The statistics of higher order terms will be a direct measure of DM substructure

The whole geometry of the halo‘s will be accessible

Allowing to probe the DM/matter offsets, difference in distribution

Presence of DM in unexpected places….  

                     The first data form the EUCLID satellite are now available
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