Towards an universal model for strong gravitational lenses

The singular perturbative theory of gravitational lenses

General problems with the modeling of gravitational lenses

The singular background The perturbative solution Physical meaning of the perturbative fields Caustics Potential iso-contour Relation to multipole expansion Some selected applications Statistical formulation Future & prospective

Reconstructing strong gravitational lenses

We observe different images of the source All images must remap to the same source This gives constraints on the potential: $\vec{r}_s = \vec{r} - \vec{\nabla} \phi$

Main problem: the potential models are degenerates

In the litterature we find NFW, cored-isothermal, power-law models,...,all these models fit the data well

Reconstructing strong gravitational lenses

As a consequence

Possible models for a lens belong to large family of models

What are the common properties of all these models ?

What kind of non- degenerate information can we extract?

The problem is related to the nature of gravitational arcs What are gravitational arcs ?

Obviously gravitational arcs are some Perturbation of the Einstein ring situation

The source is slightly off-centered The potential deviates from circular symmetry First perturbation of the perfect ring situation an off centered source In a circularly symmetric potential

Thus we should write a perturbative theory of strong lensing

The perturbative fields should be the proper non-degenrate quantities

But a perturbative theory of strong lensing looks un-tractable For a simple reason Main problem: strong lensing is highly non-linear

1% perturbator

Solving the problem

An effective perurbative theory of strong gravitational lensing

The singular perturbative solution

A perturbative approach is possible if the un-perturbed situation is a singularity

The perturbative situation

There is always An un-perturbed point On the circle Close to the perturbed point For any θ

This solution is the singular perturbative solution

We can find an un-perturbed point for any θ The perturbation is only in the radial dimension

$$\begin{cases} \phi(r,\theta) = \phi_0(r) + \epsilon \,\psi(r,\theta) \\ r = 1 + \epsilon \, dr \longrightarrow \\ \vec{r}_s = \epsilon \, \vec{r}_s \end{cases}$$
 We expand only in dr
from the unit Einstein circle

For convenience the un-perturbed Einstein circle has radius unity

$$\phi(r,\theta) = \phi_0(r) + \epsilon \psi(r,\theta)$$

$$r = 1 + \epsilon dr$$

$$\phi(r,\theta) \simeq \phi_0(1) + \phi'_0(1) \epsilon dr + \frac{1}{2} \phi''_0(1) (\epsilon dr)^2$$

$$\psi(r,\theta) \simeq \epsilon (f_0(\theta) + f_1(\theta) \epsilon dr)$$

$$\phi(r,\theta) \simeq \phi_0(1) + \phi'_0(1) \epsilon dr + \frac{1}{2} \phi''_0(1) (\epsilon dr)^2 + \epsilon (f_0(\theta) + f_1(\theta) \epsilon dr)$$

$$\vec{r}_s = \vec{r} - \vec{\nabla} \phi = (r - \frac{\partial \phi}{\partial r}) \vec{u}_r - \frac{1}{r} \frac{\partial \phi}{\partial \theta} \vec{u}_\theta$$
With: $\partial r \equiv \partial \epsilon dr$

$$\vec{r}_s = (1 - \phi'_0(1)) \vec{u}_r + ((1 - \phi''_0(1)) dr - f_1(\theta)) \vec{u}_r - \frac{d f_0}{d \theta} \vec{u}_\theta$$

The singular perturbative theory

Alard (2007)

 K_2

Mass-sheet degeneracy

Let consider a source with an impact parameter $\vec{r_0}$

For a circular source

The 2 perturbative fields have strong physical meaning

 \widetilde{f}_1 Images positions (deviation from the circle)

Where the images forms (small values of the field)

Alard (2007)

Exemple of reconstruction using the singular perturbative method Presentation of the of the lens systems

Isothermal lens source in sub-critical regime

Same lens perturbed by 1% point mass

Reconstruction for the isothermal potential

Same lens perturbed by 1% point mass

Equation for caustics

$$\vec{r}_{s} = (\kappa_{2} dr - \tilde{f}_{1})\vec{u}_{r} - \frac{d\tilde{f}_{0}}{d\theta}\vec{u}_{\theta} \qquad \qquad J \propto \frac{\partial x_{s}}{\partial r} \frac{\partial y_{s}}{\partial \theta} - \frac{\partial x_{s}}{\partial \theta} \frac{\partial y_{s}}{\partial r} = 0$$

Critical lines:
$$dr = \frac{1}{K_2} \left[f_1 + \frac{d^2 f_0}{d \theta^2} \right]$$

Caustics lines:

$$x_{s} = \frac{d^{2}f_{0}}{d\theta^{2}}\cos\theta + \frac{df_{0}}{d\theta}\sin\theta$$
$$y_{s} = \frac{d^{2}f_{0}}{d\theta^{2}}\sin\theta - \frac{df_{0}}{d\theta}\cos\theta$$

Potential iso-contours

$$\phi(r,\theta) = \phi_0(r) + \epsilon f_0(\theta) + \epsilon f_1(\theta)(r-1) = C$$

Potential iso-contour near unit Einstein circle $r_i = 1 + \epsilon dr_i$

To first order leads to:
$$dr_i = -f_0$$

The Fourier series expansion of the fields And the multipole expansion: Inner and outer contribution can be separated

$$\psi = -\sum_{n} \frac{a_{n}(r)}{r^{n}} \cos n\theta + \frac{b_{n}(r)}{r^{n}} \sin n\theta + c_{n}(r) r^{n} \cos n\theta + d_{n}(r) r^{n} \sin n\theta$$

$$\begin{cases}
a_{n} = \frac{1}{2\pi n} \int_{0}^{2\pi} \int_{0}^{r=1} \rho(u, v) \cos nv \ u^{n+1} \ du \ dv, \\
b_{n} = \frac{1}{2\pi n} \int_{0}^{2\pi} \int_{0}^{r=1} \rho(u, v) \sin nv \ u^{n+1} \ du \ dv, \\
c_{n} = \frac{1}{2\pi n} \int_{0}^{2\pi} \int_{r=1}^{\infty} \rho(u, v) \cos nv \ u^{1-n} \ du \ dv, \\
d_{n} = \frac{1}{2\pi n} \int_{0}^{2\pi} \int_{r=1}^{\infty} \rho(u, v) \sin nv \ u^{1-n} \ du \ dv.
\end{cases}$$

Multipole expansion

$$\begin{cases} f_1 = \left(\frac{\partial \psi}{\partial r}\right)_{(r=1)} = \sum_n n(a_n - c_n) \cos n\theta + n(b_n - d_n) \sin n\theta, \\ \frac{df_0}{d\theta} = \left(\frac{\partial \psi}{\partial \theta}\right)_{(r=1)} = \sum_n -n(b_n + d_n) \cos n\theta + n(a_n + c_n) \sin n\theta. \end{cases}$$

Knowing the perturbative field the multipole expansion Can be reconstructed

It allows to separate the inner terms a_n, b_n And the outer terms c_n, d_n How does the perturbative fields expansion works with real halo's ?

Here we present some comparison between the contours Reconstructed for the perturbative method and real ray tracing The perturbative expansion compared to ray tracing in numerical simulations (Peirani etal. 2008)

Some more comparisons

Some example of reconstruction With the singular perturbative method

1) single galaxy in perturbed environment

2) small group of galaxies

3) The cosmic horseshoe lens

Alard (2010)

The lens system and the reconstruction Of the 2 fields

Image and source reconstruction

Alard (2010)

The reconstruction of the potential iso-contours

Alard (2010)

0.3 0.2 0.1 Amplitude/R_E 0.0 -0.1 = -0.2 -0.3 5 6 2 3 0 θ

Fields reconstruction for the lens

Image and source reconstruction

Density reconstruction

Potential reconstruction

In this small cluster mass does Not follow light

Alard (2009)

Reconstruction of the cosmic horseshoe

Original (HST data)

Reconstructed

Subtraction: original-reconstruction

Comparison of details original/reconstruction

Outer Inner 1.4 0.7 Υ/Rε 00 Total -0.7 $^{-1}$ 0.0 X/R_E -07 0.7 -1.4 14

Solution for the fields

Potential iso-contours

Source reconstruction

Source/caustic configuration

The singular perturbative method A statistical approach

As an illustration: the statistical signature of substructures

The presence of substructure in the lens near the Einstein ring produce local perturbations

These local perturbations have specific statistical signature in the singular perturbative theory

In particular they stand up as higher order terms in the Fourier expansion of the fields.

The singular perturbative method A statistical approach

Analytical calculations of the perturbation due to a point mass

The effect on the fields as a function of the distance of the substructure

Perturbation fields due to a substructure

Alard (2008)

The statistical signature of substructure Alard (2008)

Power-law modelling of the Fourier expansion Coefficients as function of the substructure position

Mean ratio of the 2 fields Fourier coefficients

dr

0.5

1.0

+

The substructure signature is a long tail at higher order in the Fourier expansion With distinct nature between the 2 fields.

The Fourier series expansion of the fields Is rich in statistical information

$$\begin{cases} \frac{df_0}{d\theta} = \sum_n \alpha_{0,n} \cos(n\theta) + \beta_{0,n} \sin(n\theta), \\ f_1 = \sum_n \alpha_{1,n} \cos(n\theta) + \beta_{1,n} \sin(n\theta), \\ P_i(n) = \alpha_{i,n}^2 + \beta_{i,n}^2, \quad i = 0, 1. \end{cases}$$

$$= -\sum_n \frac{a_n(r)}{r^n} \cos n\theta + \frac{b_n(r)}{r^n} \sin n\theta + c_n(r) r^n \cos n\theta + d_n(r) r^n \sin n\theta. \\ \begin{cases} a_n = \frac{1}{2\pi n} \int_0^{2\pi} \int_0^{r=1} \rho(u, v) \cos nv \ u^{n+1} \ du \ dv, \\ b_n = \frac{1}{2\pi n} \int_0^{2\pi} \int_0^{r=1} \rho(u, v) \sin nv \ u^{n+1} \ du \ dv, \\ c_n = \frac{1}{2\pi n} \int_0^{2\pi} \int_{r=1}^{r=1} \rho(u, v) \sin nv \ u^{1-n} \ du \ dv. \end{cases}$$

$$\begin{cases} f_1 = \left(\frac{\partial \psi}{\partial r}\right)_{(r=1)} = \sum_n n(a_n - c_n) \cos n\theta + n(b_n - d_n) \sin n\theta, \\ \frac{df_0}{d\theta} = \left(\frac{\partial \psi}{\partial \theta}\right)_{(r=1)} = \sum_n -n(b_n + d_n) \cos n\theta + n(a_n + c_n) \sin n\theta. \end{cases}$$

 $\psi = -$

Multipole expansion

The Fourier expansion of the fields contains all the details Of the multipole expansion on the Einstein circle

The statistical analysis of a large number of lenses (EUCLID)

Reconstruction of the 2 fields for many lenses

Fourier decomposition of the fields

Full statistic of the multipole expansion

Signature from complex halo geometry

Substructures

Light-mass offsets

Mass without light counterparts

New results (rings, caustics, filaments, holes,...)

Some practical example of the statistical information Available in the perturbative fields expansion

3 halo's from Peirani etal. (2008) analyzed in detail

The perturbative expansion compared to ray tracing in numerical simulations (Peirani etal. 2008)

The perturbative expansion compared to ray tracing in numerical simulations: the shape of the perturbative fields

Lens	1	2	3	4	5	6	7
L_0	0.07	4.21	0.02	0.20	0.04	0.07	0.03
L_1	1.62	3.80	0.42	0.18	0.29	0.20	0.33
L_2	1.38	2.86	0.18	0.20	0.10	0.11	0.11

Table 2. Power spectra of $\widetilde{f_1}(\theta)$ shown in the first column of Figure 3 .

Lens	1	2	3	4	5	6	7
L_0	0.08	8.17	0.04	0.39	0.02	0.08	0.03
L_1	1.14	4.12	0.32	1.50	0.28	0.59	0.24
L_2	1.54	5.36	0.20	0.74	0.07	0.14	0.18

Table 3. Power spectra of $d\tilde{f}_0(\theta)/d\theta$ shown in the second column of Figure 3 .

The power spectrum of the perturbative fields expansion

For various halo's

When a large set of lens is available It will be possible to build a statistical analysis of the perturbative fields

The statistics of higher order terms will be a direct measure of DM substructure

The whole geometry of the halo's will be accessible

Allowing to probe the DM/matter offsets, difference in distribution

Presence of DM in unexpected places....

The first data form the EUCLID satellite are now available