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Cluster of galaxies

.~ The weak lensing method
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Einstein ring

The weak lensing regime

Strong distortion
of source image

Weak lensing regime:
larger distances
small distortion




The weak lensing regime

Is transformed
to an ellipse
(first order)

o

A round source
(no field)

-

Additionally the source position is shifted: r,#r

w



The weak lensing regime

The lens equation: rs=r—V ¢

In the weak-field regime we make a local approximation of the lens equation
near the source position

Local coordinates in the source plane: 1 =r,+dr

Whe will expand the potential near the source center r =r,+dr

¢~¢(ry+07) toorder2 with: Fg=Fy+Or%

FS:F_V¢




Image center position shift (small)

Unlensed source ST N

L Source image
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First order effect: global shift

D(Fo+ 07 )= go+ ¢, dx+ 9, dy b= 22
OX; |i7=r]
X=X— ¢ =— @, +x,+dx

Going back to the lens equation:

e i
Vy=

’y




re=—V ¢+r,+0r with r¢=ry,+0r

5F=—V ¢+

,

Shift
- /6‘

The shift affect the distribution on objects around the lens



We expand to order 2

¢(F,+07)= ¢0+? . 5F+%¢de2+ ¢, dx dy+%¢22 dy* with: ¢,=

Xs=X— ¢ == ¢ +Xx,+dx—¢, dx — P, dy
Going back to the lens equation:

CYsTY TP, =t Yy tdy — ¢y dy — ¢y, dx

D1, Dy |

M =



—_—

re=—V ¢+rg+Or—MOSr with rs=ry,+0ry

|

5Fi=—V ¢p+6T — M 6T
We introduce the centered (shift free) coordinate Su=07 —(,
here ¢, is the shift at order 2
Org= —§¢+cfo—ME[0+ ou—M ou

No shift must be =0
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5 1- ¢11 o ¢12

Introducing J =

Image
~ distortion

_ ¢12 1- ¢22 |

5=~V ¢+q,— M Gy+ Sli— M 5ti=—V ¢+ J G+J 51

No shift = JO:J_1§¢ 2§¢

Finally in the centered coordinates: - dr,=Jdu
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62
b=t
0Xx,0X,
(x,=x and x,=y

- Oxg 0ys 0¢
- ox  0x T T %
0 X 0 0

‘L\ S yS yS:y__¢
Oy 0y 0y

The effect of the second term is a distortion of the source
An initially round source is transformed to an elliptical one
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Re-writing the Jacobian
by introducing the convergence K

1-9, —¢n l1-xk—y, -y, |
= :(1—1()
¢, 1—¢,, — ¥ 1—K+3/1,
1 1
K:§<¢11+ ¢22) y1_§(¢11_ ¢22) y2:¢12

(reduced shear)




What is observable

| I-k=y, —Y¥,

| —Y> 1—K+3/1‘

We don’t observe the effect of convergence
It represents an absolute unknown scale

We observe only the reduced shear

Reduced shear and shear equivalent in the weak lensing regime



Interpretation

l-k=y, -y,
J =
/+ L
Effect of convergence Effect of shear

o -® o -&



What we observe and measure

The second order moments
— - 2
Qij—f Z(r)xl.xjd X
And the associated matrix

! Q11 le )

Q =
Qp Qn

\,,




Transforming the second order moment matrix

/77Q11 Q127 ) _ /"1_91 gzr )
= Must look like the observable partof J  J =
L Qy, sz/ 9> I+g,
1-a A
Q =Q, P o= Q,—Qy B= 2Q,,
p 1+a/ Q1 +Qxp Qu+Qyp

(a,B) aredirectly related with (g,,9,)



The second order moments are associated with an equivalent
ellitpical contour and thus a quadratic form

Qo v

As a consequence it is useful to represent the effect of shear
in terms of quadratic forms and their associated matrix



How does the shear transformation affect the ellipticities of galaxies ?

. sz_Qll /),: 2 Q21
B Q11 +Qy Q11+ Qyp

a

Let say we have some initial value for these 2 parameters
Then we apply a shear transformation

. h 1-9, g,
X represents the coordinate system Y=J X J =

g, 1+g1/



The effect of the transformation is to transform the elliptical contour
represented by the second order moments into another elliptical contour

An elliptical contour is represented by the quadratic form associated with the moments:

g=X'QX

Introducing Y=J,X Qtransformsto: q,=X J,QJ X

/ 7Q11 Q1277 )
Qi Qy, )

Thus Q = Transforms to:  Q.=J.QJ,

AN



1-g, gzr\‘

With J, =
_ gZ ]-+gl/
To first order in g; and for a circular contour Q.=J.J,
o= sz_Qll_g /3: 2(221 =g
Qu+Qy 7' Qu+Qy 7



-Cl — 7T
For a general non-circular contours Q.=J,Q1J,

Applying a shear transformation leads to:

a,=a+ug, ps=p+ug, With: u=1

u=1-le/ With: le|=~025 - u=1



By averaging on a distribution of randomly oriented sources

_ Q,—Qy _ — 2Q1 =0
a_<Q11+Q22>_0 </3> <Q11+Q22>
We have: (01 =0, Py =9;

In practice the mean orientation and ellipticities may be biased
due to the existence of cosmological structures



Using complex ellipticity and shear

Q11_Q22+21Q12
Q1 +Qp+2 \/Qn sz_Qiz

Defining the complex ellipticity: €=

Bartelmann & Schneider (2001)

| A a
@Z}AQ(_ 9>éoﬁ(8\) | anazcosze"'bzsmze \
a2 o0 | ™ Qup=a’sin®OG+b’cos’0 A S
Qo = | //
0 b - Q,,=(a*—b?)sin Hcos O
_ | b
Using the above relation we retrieve the usual complex €= (a—b) exp(216)

elilpticity (a+b)



Using complex ellipticity and shear

Q11_Q22+21Q12
Q1 +Qp+2 \/Qn sz_Qiz

Defining the complex ellipticity: €=

Bartelmann & Schneider (2001)

s_ €tg

€ =———=¢€+(g g=g,+lg,=y+1y,
1+g € i
In the weak lensing regime .

g :Complex conjugate

On average the statistical mean of the complex ellipticity for unlensed sources should be zero



Once the shear is known and a shear map is obtained

The simplest approach is to fit a model for the potential

This model must reproduce the shear map through a least-square minimization



Making a general model free map
Estimating the convergence from the shear

1
3/1:§<1/J11_1.U22) s Y=Y o, y=yntly,




Estimating the convergence from the shear
- ]_ - - - 2 -
The integral: )’(r):ﬁf i) x(r—1)d

Has an inversion formula (see Kaiser & Squires 1993)

c(F)=xo=5 [ y(8) (F~0)d’0

Thus basically the convergence is obtained by convolving the shear with a kernel



First we build a shear map

The moments: Q; are estimated from the data by using background galaxies

T

®

“ PRI

Q11 _Q22+2IQ12
Q1 +Qxp+2 \/Qll sz_Qiz

The shear is estimated from the moments: €=

=€,tg



This map is convolved with the kernel

The convergence (projected surface density) is obtained



There are many approach to reconstruct the convergence from the shear
Not necessary by using the inversion formula we just presented

Since the shear is related to the convergence by a convolution
Fourier methods are natural

But other means like for instance maximum entropy may be also used
To recover the convergence




Note: note all sources around the cluster are at the same distance

We must have spectroscopy and redshift data

1) to eliminate foreground objects (galaxies closer to us than the lens)

2) to estimate the distances background sources (galaxies behind the lens)

When no spectroscopy is available photometric redshifts are used instead to estimate
The redshifts

Thus ¢ must be re-scaled as a function of D



Example of shear maps and cluster surface

Density reconstruction form the litterature

Reconstructions for 3 clusters of galaxies
Cl1358+62 (1998)
MS1054-03 (2000)

Abell 1689 (2007)




Light distribution in the cluster CI1358+62 Shear map (equivalent elliptical distortion)
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Light distribution in the cluster CI1358+62
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Surface brightness reconstruction
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Light distribution in MS1054-03
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Shear map (vector representation)
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Light distribution in MS1054-03 Surface brightness reconstruction
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Shear Map (vector representation)

Light distribution in the cluster Abell 1689
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Oguiri etal. (2007) — obtained with the Subaru telescope



Surface density reconstruction
Oguiri etal. (2007)
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Comparison of contours
Light: red
Weak lensing: blue



Important results from weak lensing: the bullet cluster

The distribution of baryons and DM are different

56

4 o
 6'58M42* 36° f /  24° 18°

Ga‘i”s (X ray imaging)



Practical problems with the estimation of moments

noise

galaxy

e

noise X square of distance

Ql.j:f 3(7)x;x;d°x = is quickly dominated by noise out of the galaxy

Generic problem: the integral does not converge...




Practical problems with the estimation of moments

Generic problem: the integral does not converge...
— solution use some weight function

Second problem: in practice the data are convolved with the PSF

Solution: actual moments are the sum of the galaxy moments +PSF moments

Problem: the PSF may not have converging moments




Solution to the problem of PSF non converging moments:
We estimate the associated quadratic form in another way

For instance fit some generic quadratic function to the data

F(a0x2+a1xy+a2y2)

Method: convolve the generic function with the PSF
and then fit the parameters of the quadratic form

In practice we may use Gaussians (F is an exponential)
or any other functions



Strong lensing in clusters of galaxies

Reconstruction for parametric potential model
Or general description by the singular
perturbative method

For Abell 1689

Halkola etal. 2006
identified 107 mutiples images
And 32 image systems




Strong lensing in clusters of galaxies
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Surface density solution

For Abell 1689, Halkola etal. 2006

Could reproduce all the images
systems by assigning NSIE or
NFW dark matter halo’s to
individual galaxies
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Strong lensing in clusters of galaxies

Important asset of lensing in clusters:

several sources with different
Redshifts (additional constraints)

When combined with weak lensing data
The mass-sheet degeneracy may be broken

See Bradac etal. (2004)




An example of combined
strong+weak lensing data

Oguiri etal. (2007)
Subaru data

NFW profile
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