Pseudo isothermal potential $\phi = \sqrt{(1-\eta)x^2 + (1+\eta)y^2} \simeq r(1-\frac{\eta}{2}\cos(2\theta))$

$$\begin{cases} f_{1} = -\frac{\eta}{2}\cos(2\theta) \\ \frac{df_{0}}{d\theta} = \left[\frac{\partial}{\partial\theta}\theta\right]_{[r=1]} = \eta\sin(2\theta) \end{cases} \xrightarrow{\widetilde{f}_{i} = f_{i} + x_{0}\cos(\theta) + y_{0}\sin(\theta)} \xrightarrow{\widetilde{f}_{i} = f_{i} + x_{0}\cos(\theta) + y_{0}\sin(\theta)} \xrightarrow{\widetilde{d}_{i} = f_{i} + x_{0}\cos(\theta)} \xrightarrow{\widetilde{d$$

 $\eta = 0.05$, $x_0 = 2 \eta$, $y_0 = 0$, $\theta = 0$, $R_0 = 0.02$

Fold caustic $\eta = 0.05$, $x_0 \simeq 0.035$, $y_0 \simeq 0.035$, $\theta = 0$, $R_0 = 0.02$

Caustics for the pseudo isothermal potential

$$\begin{cases} x_s = \frac{d^2 f_0}{d \theta^2} \cos \theta + \frac{d f_0}{d \theta} \sin \theta = \frac{\eta}{2} (\cos 3 \theta + 3 \cos \theta) \\ y_s = \frac{d^2 f_0}{d \theta^2} \sin \theta - \frac{d f_0}{d \theta} \cos \theta = \frac{\eta}{2} (\sin 3 \theta - 3 \sin \theta) \end{cases}$$

Potential perturbed by local substructure $\phi = \phi_{iso} + \phi_{pert} \simeq r(1 - \frac{\eta}{2}\cos(2\theta)) + \mu\sqrt{(x - x_1)^2 + y^2}$

The effect of the perturbation on caustics

The effect of the perturbation on caustics

Find the corresponding solution for the image field

Note the field is periodic thus: $\int_{\theta=0}^{\theta=2\pi} \frac{df_0}{d\theta} d\theta = 0$ the mean value of f_0 is zero

Find the corresponding solution for the image field

Find the corresponding solution for the image field

The lens system and the reconstruction Of the 2 fields

Alard (2010)

The reconstruction of the potential iso-contours

Alard (2010)

Image and source reconstruction

Alard (2010)

Reconstruction of the cosmic horseshoe

Original (HST data)

Reconstructed

Reconstruction of the cosmic horseshoe

Original (HST data)

Reconstructed

Outer Inner 1.4 0.7 Υ/Rε 00 Total -0.7 -10.0 X/R_E -07 0.7 -1.4 14

Solution for the fields

Potential iso-contours

Source reconstruction

Source/caustic configuration

0.3 0.2 0.1 Amplitude/R_E 0.0 -0.1 = -0.2 -0.3 5 6 2 3 0 θ

Fields reconstruction for the lens

In practice how do these reconstructions work?

They work by a χ^2 descent method (the simplex for instance)

How do we estimate the χ^2 for a given potential ?

The lens potential is known but the source model is unkown In this case the source reconstruction is a linear least-square problem

Represent the source as a linear sum of local basis functions - $Source = \sum_{i} a_{i} B_{i}(x_{s}, y_{s})$ Estimate the image of each basis function using ray-tracing $C_{i}(x, y)$ image of $B_{i}(x, y)$ Convolve each image of the basis function with the PSF model $D_{i}(x, y) = C_{i}(x, y) * PSF(x, y)$ Make a linear least-square fit of the arc image $I_{arc}(x, y) = \sum_{i} a_{i} D_{i}(x, y)$ Estimate $\chi^{2} = \int [I_{arc}(x, y) - \sum_{i} a_{i} D_{i}(x, y)]^{2} dx dy$