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Introduction:

scientific

context

SR

Equivalent c.m. energy\'s,, [GeV]

102 10° 10* 10° 10°
§I|Ilf |T I II|I|l| f I |I|I||| T 1 I Illllll I I IIIIIII
- RHIC (p-p) Tevatron (p-p) LHC (p-p)

L HERA (y-p) ¥ HiRes-MIA

E A HiResl|

= A HiRes I
(g O AGASA/Akeno
= % o, e Auger 2009

origin of multi-PeV to 0.1-1
EeV CR component ?
(Budnik+08)

* Produce gamma-rays
above 10-100 TeV.
=> high sensitivity at

high energy.

* Produce neutrinos
beyond a few tens of TeV.



When a CR source 1s a
Pevatron ?

SR

Based on supernova remnants:

= Need to wait for sufficiently long time because E__ (t) 1S
maximal: at the start of the Sedov-Taylor phase.

«® Need to look for more extreme (and short lived) conditions:
fast shocks as t, .. ~V,?

R Free expansion phase => softer spectra (Zirakashvili &
Ptuskin’05, Ptuskin+10, Schure & Bell’13, Cardillo+15)

Other objects may contribute to this component: massive stellar
clusters & superbubbles, fast rotating pulsars ... discussed in this
meeting.
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This study

SIS

R Considers the second case.

< Fastest “common objects” velocities: early stages of SNe
evolution, after the forward shock breakout.

R common objects <> observational test because Pevatron phase
should not last for long.

R Adapt more recent theoretical advances on SNR to SNe (see
also: Bell’04, Tatischeff’09 (T09 hereafter), Schure &
Bell’13, Marcowith+14, Cardillo+15, Giacint1 & Bell’15,
Zirakashvili & Ptuskin’16...).

2 A large part of this study 1s based on T09.
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Supernovae: SN1993J

SIS

Nearby SN d~3.5 Mpc in M8I.
Core collapse SN of type II b.

Progenitor: red supergiant star M~ 15 solar masses, likely
in a binary system (Aldering+94)

Best multi-wavelength-monitored object with SN 1987A
(Marcaide+97, Bietenholz+03)

Well monitored also in X-rays (van Dyk’08)



Radio observations: shock dynamics
and magnetic field strength

SR
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Barthel+02 6~t™

m= 0.919 +/-0.019 (30d <t < 306 d)
m = 0.867 +/— 0.026 (306 d <t < 582 d)
m = 0.781 +/- 0.009 (586 d <t < 1893 d)

TO09 argued that a self-similar
solution (Chevalier’82) can fit all
data with

0= 0.292+/~ 0.04 (t/100 d)™
m=0.829+/- 0.05

extrapolated to 1d after the outburst

R,=R, (t/1d)%83, R,=3.5 10" cm



Radio observations: shock dynamics
and magnetic field strength
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data, best fit (solid): Weiler+07, Synchrotron
self-absorption model (dotted) (see T(09)
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T09: best fit model including SSA,
free-free absorption

B=(2.4+/-1.0)G (t/100d)°

b=-1.16+/-0.2

extrapolated to 1d gives
B~500 Gauss.

Fransson & Bjornsson’98

found :
B~340 G (t/1d)!



Wind model

SR

«® We adopt a model with a constant mass loss rate so a wind
density p ~1?
R Propagation index in self-similar solution m=(n-3)/(n-s) hence
m=0.83 and s=2 gives for ejecta velocity profile index n=7.88

= Best fit radio gives a mass loss rate ~ 3.8 10~ solar masses/
year.

2 RSG wind u,=10 km/s

2 Wind magnetic field strength unknown: equipartition field ~
0.1 gauss. (<< 500 G!)

2 Topology unknown (to be discussed later).
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Model assumptions

SR

@ Magnetic field amplified by the means of CR induced
instabilities.

R This 1s likely the origin of X-ray filaments in young
SNRs.
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Model assumptions

SR

@ Magnetic field amplified by the means of CR induced
instabilities.

R This 1s likely the origin of X-ray filaments in young
SNRs.

R caveat: no observational support yet of ultra-relativistic
particle acceleration.

R Synchrotron radiation by relativistic electrons with energy
distribution E™; m~3.

«® No gamma-ray detected yet.
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Cosmic Ray acceleration
efficiency
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weakly modified shock at T < a few hundred days
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Cosmic Ray induced instabilities in
fast SN shocks

SIS

R Streaming instabilities : non-resonant and resonant.
R Filamentation instability.
Rk Oblique mode generation.

R Fluid instability produced by a CR gradient.
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Streaming 1nstabilities: non-
resonant and resonant

S S
«® Non-resonant instability (NRI) minimum growth time (Bell’04)
20 R, c
fi ; VL3 VA,CSM = (O-Ogd)&Ep.evtjf17
sh 0.05

with (I)=ln(EmaX/ Einj); §=PCR/ p\[sh2

«® Resonant instability (RI) (Amato & Blasi’09)

i RL,/i ~(0.44d) Epelj’z t,;;0 =38V, /c;w=B, /B,
TO w&

0.05

Intraday growth times



Condition for 1mnstability

growth

SR

«® R= Ratio instability growth time/advection time in the

precursor < 1.

R Advection time ?

&R Case of parallel shock i =
R Diffusion at a rate 1 Kgypp,

R 1 (505)
> Rpron > 1 (~2.5,017, 1 at 219 days)
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Magnetic field saturation

SIS

* Magnetic tension=Lorentz force (Bell’04, Pelletier+06)

3
B, _12n§pvm => B, ~15G /5005 s
9 c D6

/ BCSM

* Amplification factor A= B

111 [B o
@ \ @
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Filamentation instability

SR

«® Long-wavelength generation: high-energy CR acceleration.

& Filamentation <> -J-pxB force : nqy increase in the filament, n, outside

Reville & Bell’'12, Caprioli &
Spitkovsky’13
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Fast grow but increases rapidly with time
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Long oblique modes
generation

SIS

* CR current driven small scale instability => ponderomotive

force
* CR current response on turbulence <~ mean field dynamo
(Bykov+11)
» Fastest growing modes are oblique wrt to background MF
* Case k=1/mR;

3/4
fies =\/ : \/ 15 (O.Sd)\/i( Do ) EPthcli.OSSa
AN Ko Vs .CSM @ \ & 05
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CR gradient driven/
hydrodynamic instability

SR

R CR gradient in the CR precursor => density
fluctuations are destabilized and grow => small-scale
dynamo (Beresnyak+09, Drury+12)

Tmin goe 1 VA CSMLcoh (10—2 d)L 0 Al

coh pc
K sh

L.,,: coherence length of the upstream turbulence (so in the wind), unknown,
we can have a guess: a fraction of the termination shock radius so 0.1-3 pc for
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Long-wavelength modes
generation

SR

® AT T or T =

min,Fil> ~ min,ob? min,hyd adv,u

R So 1f NRS instability can be triggered both
Filamentation and oblique modes generation should
work.

R In case NRS does not operate, one may rely on
hydrodynamic instability to generate long wavelengths.
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Caveats

SIS

CSM magnetic field obliquity and strength.
R In case of a perpendicular shock, the advection time 1s

reduced.
adv — Rch 977 >1
3V,
Rz <N

If the product nw < 1 the NRI instability can still grow, but
if nw > 1 the NRI instability 1s quenched.
» Highly dependent on the CSM MF strength and topology !



Particle distribution

SIS

Two-zones model:

R Non-linear acceleration including CR backreaction (Berezhko
& Ellison’99) => F, i E oy (f)

 Downstream: Losses = radiative (synchrotron/Inverse
Compton, Bremsstrahlung), collisions (neutral pion),
adiabatic losses.

* Secondaries from charged pions

 Gamma-ray radiation including anisotropic gamma-gamma
absorption over SN photosphere photons.
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Results: gamma-rays

SR

@ Gamma-rays are produced by pp neutral pion decay
(IC negligible because of high MF strengths).

o Kirk+95 Fyyy(>1TeV)~2 102ph/cm?s

Unabsorbed Gamma-Ray Flux

Log,, E, (TeVi
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gamma-gamma absorption

SR

Rk But the source 1s compact: gamma-gamma absorption
on SN photosphere photons.

R Tatischeff’09 Fgy;;(>1TeV)~4 10->ph/cm?s but after 270
days.

R But gamma-gamma interaction is:
I. anisotropic
2. time-dependent
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Gamma-gamma opacity
calculation

Ru(®) SRS

Interaction at time t
gamma photon emitted at t-d,/c

soft photon emitted at t-d./c
+ doppler shift

Isotropy good approximation up to
Rsh/Rph~3 (< 15 daYS)
Point source approximation beyond

—
AR AL |

Radus (10" em)
=
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Integrated gamma-ray signal

I

Time (days)
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2l

b: E> 100 GeV
r: E> 1TeV

best windows:

1-2 after the explosion
one week after 8-15
days



Neutrino signal
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Secondaries
Time-dependent transport equation :

= Q(E(t),t) = C(E(t),t)N(t) C(E.t) = JE/OE E = —a(t)E?

{ ol
N(E,t) = / Q(E.t') x exp (—/ (B, }dt") dt'
A J1!

Radio measurements
(Weiler et al. 2007)

a(t) = (4/3)c.c B*(t)/8mm *c*
Q(E,t) from pP-p— 1[+,-'- — e.,.,,-_

X-ray measurements
(Zimmermann et al. 1994)
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Relevant parameters

SR

Key parameters Effects

Meeting "Beyond a PeV" 30



Core collapse SNe

SRS
SN IIb about 5-6% of cc SNe. Most relevant are the “extended” IIb (see

Chevalier & Soderbergh’10): extended radii and higher mass loss rates.

SN IIP about 50% of CCSNe but with lower F ratios, dimmer X-rays
(ambient medium especially heavy elements possibly partially ionized at
times t > 10 days, Dwarkadas’14)

SN IIn: (wrt to IIb) higher F ratios but more rare (1-4% of CCSNe), but
develop different hydro profiles (dense shells) (no self-similar solutions).

SN Ib/Ic: likely connected with Wolf-Rayet phase (lower ratio R), are also
rare. Bordered by a dense shell.

Need a relatively nearby source (D < 10-20 Mpc). Probed at other
wavelength cm: VLA, mm: ALMA over month timescales (Murase+09) or
by the emission of multi TeV neutrinos (Katz+12).



R

Conclusion

SRR
CR may be efficiently accelerated in early SNe phases, after the outburst.

CR driven instabilities can grow fast and compensate short CR advection
time.

R They may explain high MF deduced from SSA analysis in radio SNe.
R But this depends on the wind MF topology.

Gamma-ray emission: sensitive to gamma-gamma absorption.

R Best observation window 1-2 days or 8-15 days after the outburst (SN 93 J
case)

R Potential targets for CTA: observation strategy to set-up.

Still difficult task because: targets should have high F and should be close
enough: so rare (very rare) events.

Potential detection rate remains to be determine for CTA.
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Announcement

SN 1987A, 30 years later

Cosmic Rays and Nuclei from Supernovae and their aftermaths .. °

FEBRUARY 20-24, 2017

February 2 0_24th 2 O 1 7 Saint-Gilles, La Réunion Island, France

Saint Gilles de la Réunion.

SCIENTIFIC QRGANIZING COMMITY)

cc-SNe as stellar explosive outcomes

cc-SN explosion mechanisms

cc-SN remnants and impacts

Particle acceleration & Origin of cosmic rays

SN 1987A, 30 years later

Non-thermal multi-wavelength/multi-messenger data on SNe and SNRs
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CSM Magnetic field
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CSM magnetic fields

Leal-Ferreira+13
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Ionization degree

R lonization fraction: effects of neutrals => NR modes damping.

SR

d Il{evillle+'07 |
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SNR conditions

solid n=0.1 cc T=104K
dashed n=1cc T=103K
dot-dashed n=10 cc T=100 K



X-rays
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X-rays from Bremsstrahlung
(e-1 equilibration)
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