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The paradigm of slow-roll inflation
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Scales and horizons
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Some useful properties of GWs

perturbations of the background metric: ~ ds* = a*(7) (N, + ho (%, 7))dzt dx”

governed by linearized Einstein equation (hi; = ahij, TT - gauge)

B;;-(k,f) T hij(k,7) = 167G all;(k,T) source: anisotropic
a \ ~ - (not spherical symmetric)
N—— source term from 67,

siress-energy tensor

~a? H?

k> aH : h;j ~cos(wr)/a, k< aH: h;j ~ const.

+o0 .
a useful plane wave expansion: h;; (, 1) Z / dk /ko hp (K km oF (k) e~ik(r—Fe)
Na(T )/a(T)

transfer function , expansion coefficients , polarization tensor P = +, X

N © ____‘f"_o
observational quantity in direct detection @ W .
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Hunting for primordial GWs
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through Thomson scattering
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- Lensing: T->E

- dust contaminates
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GW travels freely until today

distortion of space as GW
passes detector

ground-based interferometers
space-based interferometers
pulsar timing arrays
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Hunting for primordial GWs
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Rubakov ‘82
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Seto, Yokoyama '03
BICEP2 ‘14 Smith, Kamionkowski '05
10° -
I Wag- A0 102 10%
10' O‘TD Q  WMAP " —’—-:“ o
- | QUET-W  CAPMAP —-v—;,“::’v’ _— ] l
2
& /7 \ i
8 [ / LIGO ]
Q L / |~/ i
% ~ I \ / ET ]
= < I .= ]
= 10_151_ inflation “¥7’/BBO/DECIGO ]
S f r=0.1 b f
10720 [ \ ]
1077 eq RH -’
hypothetical primordial Lensing :
. . . ~ 10-30 N I I T S T IS TS RS R .
contribution withr ~ 0.17 1020 105 101 105  10° 10° 1070

f[Hz]

sensitive to CMB scales with suitable detectors, probe 30 orders of magnitude
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But this is not the end of the story...

Non-standard sources during inflation Cook. Sorbo 2012

Biagetti, Fasiello, Riotto 2014
scalars: spectator fields (enhanced by ¢s < 1)

seuoetocs oo >

phase transition(s) during inflation

Anber, Sorbo '06./10/'12,
- Barnaby, Namba, Peloso '11,
Barnaby, Pajer, Peloso ‘12, ...

| see next talk by
u Mauro Pieroni

Freese, Spolyar 2004

see also Hebecker, Jaeckel, Rompineve, Witkowski 16
for PT just after inflation

Non-standard evolution after inflation

Second order gravitational waves

Spookily '93; Joyce '96;
Giovannini '99; Sa, Henriques ‘10

Assadulahi, Wands ‘09

SOu

Bouncing cosmologies, broken spacial diffeomorphism, ............ + your favorite model | forgot to mention

See also: eLISA inflation working group report, to appear soon;
Guzzetti, Bartolo, Liguori, Matarrese ‘16
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non-standard equation of state after inflation
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second order GW production

Large scalar perturbations re-entering the horizon after inflation Tomita '67, ...
* Assadulahi, Wands ‘09

grow in a matter-dominated reheating phase o}
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small scales

note: very large A? on small scales leads to the formation of primordial black holes,
which in turn can produce GWs in merger processes.
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Other stochastic backgrounds

(incomplete list)
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Cosmic strings

U(1) phase transition in the early universe (after inflation) -> cosmic strings
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Cosmic string network, topologically stable but looses energy into GWs (and particles)

Evolution of cosmic string network can be studied numerically in the “Abelian Higgs” or
“Nambu Goto” model

- Abelian Higgs model: Main source for GWs are horizon sized cosmic strings

- Nambu Goto model: Main source for GWs are small cosmic string loops
Vilenkin ‘81, Hindmarsh ‘12
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Cosmic strings

k[Mpc™'] GUT-scale phase transition after hybrid inflation,
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Conclusion and Outlook

- There is no guaranteed early Universe GW signal for upcoming detectors - but many
interesting models will be probed

~ The stochastic background of cosmic inflation is an extremely powerful tool:
It would shed light on the microphysics of inflation, as well as the entire subsequent
cosmological history

- The complementarity of CMB and direct GW measurements provides a
powerful probe of the physics of cosmic inflation.

- For the simplest models of inflation, the primordial GW signal is unobservable by
upcoming GW interferometers. But possible game changers are:

C

- non-standard sources during inflation
- stiff equation of state during reheating
- second order tensor perturbations

- Other potential GW sources linked to the early universe are preheating, cosmic strings,
merger of primordial black holes, phase transitions...

Thank you!
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