The Making-of ... a Binary Black Hole erc formation channels of stellar origin

In collaboration with: BinCosmos group in Amsterdam, Hugues Sana, Leonardo Almeida, Ilya Mandel, Chris Belczynski, Andrew King, Pablo Marchant, Philip Podsiadlowski, Matteo Cantiello, Simon Stevenson, Alejandro Vigna-Gómez, VLT-FLAMES Massive Star Consortium, and many others

Bin

losmos

ANTO WIND WIND WIND WIND

Selma E. de Mink

Anton Pannekoek Institute for Astronomy, University of Amsterdam

Bin Losmos **BinCosmos Group @Amsterdam PhD Students Incoming Prize Fellows** Paresce Marie Curie VENI Manos Ylva Mathieu Zapartas Götberg Renzo **MSc Students** Ehsan Silvia Moravveji Toonen - MARSUN Y Abel Coen Schootemeijer Neijssel \rightarrow Langer \rightarrow Mandel Selma E. de Mink YWA

Anton Pannekoek Institute for Astronomy, University of Amsterdam

Scope of this talk

*Merchandise: Baby black hole, comes with adoption certificate www.etsy.com

Making-of ...

Scope

(A) Stellar Origin Black Holes

 ✓ Gravitational Collapse of (the core of) a massive star

(B) Primordial Black Holes

- Gravitational Collapse of extreme densities at high redshift
- Constituent of Dark Matter (instead / in addition to more popular but still elusive WIMPs)

Observed
 (albeit at somewhat lower mass)

- \checkmark Somehow evaded strong constraints by
 - Micro lensing events
 - CMB spectral distortions
- Still hypothetical ... (so far)

Carr & Hawking (1974), Carr (1975, 1976), Garcia-Bellido et al. (1996), Khlopov (2010), Frampton et al. (2010), Blais et al. (2002), ...

Stellar Origin

Two types of Formation Channels

1. Evolutionary formation channels

Stellar Density

Two types of Formation Channels

1. Evolutionary formation channels

- Classical channel (involving common envelope or other forms of mass transfer)
- Chemically Homogeneous Channel (mixing processes in near contact binaries)

✓ ...

2. Dynamical formation channels

- Chaotic Dynamics in dense Star
 Clusters or Nuclear star clusters
- ✓ Resonances in Triple systems
- ✓ Gaseous AGN discs near supermassive black holes in centers of galaxies

✓ ...

Two Main Challenges for all progenitor scenarios

Progenitors

Separation

Separation

Separation

Masses

Masses

VS

Gravitational Waves Caltech/MIT/LIGO Lab

X-ray Binaries

ESO/L. Calçada/M.Kornmesser

Masses

Black holes with Known Masses: Typically: 5-10 M_o

Farr et al. (2011)

Cosmos

Greiner et al. (2001) Gelino et al. (2008) Harlaftis & Filippenko (2005) Orosz et al. (2004) Filippenko et al. (1999) Cantrell et al. (2010) Neilsen et al. (2008) Gelino & Harrison (2003) Gelino et al. (2001) Greene et al. (2001) Orosz (2003) Orosz et al. (2011) Orosz (2003) Charles & Coe (2006) Khargharia et al. (2010) Casares et al. (2009) Charles & Coe (2006) Charles & Coe (2006) Gies et al. (2003) Orosz et al. (2007) Crowther et al. (2010) Orosz et al. (2009) Prestwich et al. (2007) Silverman & Filippenko (2008)

Are local X-ray binaries Representative?

"Mass Challenge"

How to avoid excessive Mass loss?

Need for reduced winds

Belczynski et al. 2010

Reduced (line driven) winds at lower metallicity

Mass loss uncertainties

Renzo et al. (in prep)

Mathieu Renzo

Mass loss uncertainties

Mass loss uncertainties

Mathieu Renzo

What do we know about the progenitors

Closest Peak at their Progenitors

Black Holes in the making: Tarantula Nebula

VLT-FLAMES (Evans, Sana), HST (Sabbi, Lennon, Crowther), Chandra (Townsley)

VLT-FLAMES (Evans, Sana), HST (Sabbi, Lennon, Crowther), Chandra (Townsley)

1. Masses

2. Binary Separations

Bin Cosmos

VLT-FLAMES (<u>Evans</u>, Sana), HST (<u>Sabbi</u>, Lennon, Crowther), Chandra (<u>Townsley</u>)

Dynamical formation Channels

cf. Sigurdsson & Hernquist 1993; Portegies Zwart & McMillan 2000; Miller & Lauburg 2009; Rodriguez et al. 2015, 2016; Antonini et al. 2016, ... (incomplete)

single – binary scattering

Inside a dense star cluster

Movie available through Carl's website

Credit – Northwestern Visualization, Carl Rodriguez

Evolutionary

1. Classic Common Envelope Channel

Tutukov & Yungelson 1973, 1993; Lipunov, Postnov & Prokhorov (1997), Bethe & Brown (1998), Bloom, Sigurdsson & Pols (1999), De Donder & Vanbeveren (2004), Grishchuk et al. (2001), Nelemans (2003), Voss & Tauris (2003), Pfahl, Podsiadlowski & Rappaport (2005), Dewi, Podsiadlowski & Sena (2006), Kalogera et al. 2007; O'Shaughnessy et al. (2008), Mennekens & Vanbeveren (2014), Dominik et al. (2015), de Mink & Belczynski (2015), Belczynski et al. 2016, ...

Classic Channel

Belczynski et al. 2016

Classic Channel (part 2)

Belczynski et al. 2016

2. Chemically Homogeneous Channel

(Other names: Case M, Rotational channel, Tidal mixing channel)

de Mink et al. (2008, 2009), Mandel & de Mink (2016), Song et al. 2016; Marchant et al. (2016), de Mink & Mandel (2016), ...

... very rapidly rotating single stars ...

Ramirez-Agudelo et al. (2013, 2015)

Effect on the stellar structure

Maeder 87, Yoon & Langer 05

Mykonos 2010

Selma de Mink

Argelander Institute Bonn

Effect on the stellar structure

Maeder 87, Yoon & Langer 05

Selma de Mink

Surface composition

Mykonos 2010

Selma de Mink

Argelander Institute Bonn

What about binaries?

What about binaries?

Which stars evolve homogeneously?

Mykonos 2010

Selma de Mink

Argelander Institute Bonn

For tidally locked binaries

Mykonos 2010

Selma de Mink

Argelander Institute Bonn

Proof of principle

Binary models

Binary models

Is this really happening?

Almeida, Sana, de Mink et al. (2015)

Mykonos 2010

Selma de Mink

Argelander Institute Bonn

Do the Binary BHs merge?

Mandel & De Mink (2016) cf. Marchant et al. (2016)

Cosmic Star formation

Cosmic Merger Rate

"Predicted" Chirp Masses

De Mink & Mandel (2016)

"Predicted" Mass Ratios

De Mink & Mandel (2016)

Chemically Homogeneous Channel to form BH-BH mergers

Mandel & De Mink, Marchant et al. (2016), De Mink & Mandel (2016)

de Mink

Wrap Up

Making-of

... Positions opening in Amsterdam to work on massive binaries

R