19th September 2016, Institut d'Astrophysique de Paris

The response of the Milky Way disc to the Large Magellanic Cloud and Sagittarius dSph

Chervin F. P. Laporte Simons Fellow, Columbia University

arXiv:1608.04743,

with F. Gomez (MPA), G. Besla (Arizona), K. Johnston (Columbia), N. Garavito-Camargo (Arizona)

photo credit: Denis Erkal (IoA)

see also Kalberla07,09

HI warp Z(R) structure: characterised by the linear combination of 3 Fourier modes (m=0,1,2)

see also William13, Carlin13 (for similar results for vz)

GASS/Monoceros Ring

Originally detected as an overdensity of stars in SDSS footprint, also imaged in 2MASS and PANSTARRS (here)

structure extends: $120^{\circ} < l < 240^{\circ}, -30^{\circ} < b < +40^{\circ}$

Hd~6kpc in South Hd~9kpc in North

Newberg et al. 2002, Ibata et al. 2003, Rocha-Pinto et al. 2003, Slater et al. 2014, Morganson et al. 2016

GASS/Monoceros Ring

FORMATION scenarios:

1) Disc material kicked out to highlatitude by satellite encounter (Kazantzidis09,Purcell11,Gomez13,Price-Whelan15)

2) Remnant stream of in-plane accreted dwarf (Penarrubia05)

TriAnd I & II Clouds R~30 kpc, Z~-10 kpc

(see also Sheffield14, Xu15, Price-Whelan15)

Satellite-halo interactions: tidal interaction and DM halo wakes

Dynamics of an interacting luminous disc, dark halo and satellite companion

0.65 -----

-0.35 ······ -0.55 ······

-015

midplane height

Martin D. Weinberg*† 1998

Department of Physics and Astronomy, Universi

DM halo wake excited by perturbing satellite

See also Weinberg 89, Vesperini & Weinberg 00, Weinberg&Blitz06

Fly-bys in cosmological hydrodynamical N-body simulations of MW-mass galaxy formation

0 90 180 270

0 90

MCs **Revised HST proper motions** suggest first infall orbit (Besla et al. 07, Kallivayalil et al. 2013)

Components		units
DM halo		$N_{part} = 20,000,000$
Virial mass	1×10^{12}	${ m M}_{\odot}$
Scale radius	28	kpc
Concentration	10	
Stellar disc		$N_{part} = 6,000,000$
Mass	$6.5 imes 10^{10}$	M_{\odot}
Scale length	3.5	kpc
Scale height	0.53	kpc
Bulge		$N_{part} = 1,000,000$
Mass	1×10^{10}	M_{\odot}
Scale radius	0.7	kpc
Gas disc		$N_{part} = 1,000,000$
Mass	$8.7 imes 10^9$	${ m M}_{\odot}$
Scale length	3.5	kpc

Table 3. Differences $\Delta = X_{sim} - X_{data}$ in position, velocity, position and speed between the model realisations and LMC data from (Kallivayalil et al. 2013). The adopted phase-space location of the LMC is taken to be $X_{data} =$ (-1.06, -41.0, -27.0, -57.4, -225.5, 220). The final distance and speeds for the various LMC models are within 2σ from those determined observationally - $\sigma_v = 24$ km/s (Kallivayalil et al. 2013) and $\sigma_D = 2.5$ kpc (Freedman et al. 2001) - except for the last model which slightly exceeds 2σ .

Components		units
DM halo		$N_{part} = 20,000,000$
Virial mass	1×10^{12}	M _☉
Scale radius	28	kpc
Concentration	10	_
Stellar disc		$N_{part} = 6,000,000$
Mass	$6.5 imes10^{10}$	M_{\odot}
Scale length	3.5	kpc
Scale height	0.53	kpc
Bulge		$N_{part} = 1,000,000$
Mass	1×10^{10}	Mo
Scale radius	0.7	kpc
Gas disc		$N_{part} = 1,000,000$
Mass	$8.7 imes 10^9$	M⊙
Scale length	3.5	kpc

Lines of Node Asymmetrical warp shape Z(R) is characterised by 3 Fourier terms Discrepancy with amplitude (0.5-0.7kpc, 2-3 kpc)

completes one orbit within host. High but within estimates (e.g. Li & White08)

Systematics? OR recent misaligned infall?

Are solar neighbourhood constraints satisfied?

LMC mass of 2.5e11 Msun does not affect dramatically SN constraints

Larger masses still viable

Comparison with a massive (10^11Msun Sgr dSph model)

Laporte, Gomez, Besla, Johnston, Garavito-Camargo (in prep.)

• LMC revised upward mass and first infall orbit capable of warping the disc (correct phase, anti-symmetrical shape as in HI data).

- LMC revised upward mass and first infall orbit capable of warping the disc (correct phase, anti-symmetrical shape as in HI data).
- BUT discrepancies remain (SMC's halo contribution / Sgr dSph may help? Misaligned gas infall? Possible systematics in (I,b, vr)->(Z,R,phi) inference?).

- LMC revised upward mass and first infall orbit capable of warping the disc (correct phase, anti-symmetrical shape as in HI data).
- BUT discrepancies remain (SMC's halo contribution / Sgr dSph may help? Misaligned gas infall? Possible systematics in (I,b, vr)->(Z,R,phi) inference?).
- Large scale asymmetries seen in outer disc can quantitatively be attributed to satellite accretion. Heavy Sgr model (~1e11Msun) consistently reproduces location of MR (north and south), TriAnd Clouds (Z~-10 kpc and R~30kpc) - (models being further explored)

- LMC revised upward mass and first infall orbit capable of warping the disc (correct phase, anti-symmetrical shape as in HI data).
- BUT discrepancies remain (SMC's halo contribution / Sgr dSph may help? Misaligned gas infall? Possible systematics in (I,b, vr)->(Z,R,phi) inference?).
- Large scale asymmetries seen in outer disc can quantitatively be attributed to satellite accretion. Heavy Sgr model (~1e11Msun) consistently reproduces location of MR (north and south), TriAnd Clouds (Z~-10 kpc and R~30kpc) - (models being further explored)
- Structure of HI and stars in disc point out MW is most likely currently being shaped by the combination of the MCs and Sgr.

Comparison with a massive (10^11Msun Sgr dSph model)

