The chemistry of the Milky Way disk

Thomas Bensby

Dept. of Astronomy and Theoretical Physics Lund University Sweden

The Milky Way has two disk populations

(Gilmore & Reid, 1983, MNRAS, 202, 102)

Thick disks in external galaxies

Burstein et al. (1979, ApJ, 234, 829)

Bulge and thin disk profiles shown, however a third diffuse component is needed to fit the luminosity distribution perpendicular to the plane, named the "Thick disk".

The Milky Way as a benchmark galaxy

Milky Way is the only galaxy that can be studied in great detail and a good understanding of its stellar populations is important for our understanding of galaxy formation in general

NGC 891

The Milky Way as a benchmark galaxy

Why does the Milky Way have two disk populations?

Need to characterize them in terms of

- velocities
- abundances
- ages

Not only in the solar neighbourhood, but throughout the Milky Way galaxy

Nearby stars - no selection

- Fuhrmann's study is 85% volume complete for all mid-F type to early K-type stars down to Mv=6.0, north of dec=-15°, within a radius d<25pc from the Sun
- Two types of stars:
 - 1. Old stars with high [Mg/Fe] ratios
 - 2. Young stars with low [Mg/Fe] ratios

Two types of stars - high-alpha & low-alpha

Two very different distributions of eccentricity and Jz for low- and high-a stars

Metallicities

(data from Fuhrmann's papers)

Solar neighbourhood

Solar neighbourhood, in the plane:

> ~90 % thin disk ~10 % thick disk

scale-heights: 300 pc & 1000 pc, respectively

To be sure to observe thick disk stars, you need to go at least 2 kpc above/below the plane

F and G dwarf stars usually too faint for high-resolution studies at those distances!!

Kinematical criteria to select nearby thick disk stars

$$P = X \cdot k \cdot \exp\left(-\frac{U_{\text{LSR}}^2}{2\sigma_{\text{U}}^2} - \frac{(V_{\text{LSR}} - V_{\text{asym}})^2}{2\sigma_{\text{V}}^2} - \frac{W_{\text{LSR}}^2}{2\sigma_{\text{W}}^2}\right) \qquad k = \frac{1}{(2\pi)^{3/2}\sigma_U\sigma_V\sigma_W}$$

	$\sigma_{\rm U}$	σ _V	$\sigma_{\rm W}$	V _{asym}
Thin disk (D)	35	20	16	-15
Thick disk (TD)	67	38	35	-46
Halo (H)	160	90	90	-220

Gaussian velocity distributions, X is normalisation in solar neighbourhood (~90% thin, ~10% thick)

Probability ratios: *P*(TD/D)>1 is more likely to be a thick disk star

Chemistry of the Solar neighbourhood

Bensby et al. (2014, A&A, 562, A71)

712 F and G dwarf stars in the Solar neighbourhood

Similar dichotomy seen in many other Solar neighbourhood studies, e.g., Bensby+2003,2004,2005,2006,2007, Reddy+2003,2006, Adibekyan+2012, Fuhrmann 1998,2001,2004,2008,2011, and others.....

A bit further away

Further away and larger samples - APOGEE

• Hayden et al. (2015), based on red giants from APOGEE DR12

Further away and larger samples - Gaia-ESO

Lack of alpha-enhanced stars in the outer disk!

Similar results seen in local data

Bensby et al. (2014, A&A, 562, A71)

- 714 F and G dwarfs in the solar neighbourhood (d<100 pc).
 Calculating stellar orbits
 - Calculating stellar orbits to get $R_{\text{mean}} = (R_{\text{min}} + R_{\text{max}})/2$
- Almost no (old) highalpha stars with *R*_{mean}>9kpc
- Almost no (young) lowalpha stars with *R*mean<7kpc

Scale-lengths in external galaxies

Comeron et al. (2012, ApJ, 759, 98) Luminosity profile fitting

scale-length

disk

Thick

Thick disk scale-lengths are longer than thin disk scale-lengths!

Kinematics

0.6

714 nearby dwarfs from Bensby et al, (2014)

Kinematics:

Using Gaussian velocity ellipsoids to calculate probabilities that the stars belong to either the thin or the thick disks

TD/D = 1, equal probabilities TD/D>1, more likely to be thick disk TD/D<1, more likely to be thin disk

Kinematic confusion

Two well-defined, but not perfectly clear trends

714 nearby dwarfs from Bensby et al, (2014)

Ages

Kinematic confusion

Ages seem to better discriminator between thin and thick disk, but ages are rarely available and very difficult to determine

714 nearby dwarfs from Bensby et al, (2014)

Chemistry - GESiDr4, solar cylinder R=1 kpc

Toomre diagram:

Abundance criterion produces kinematical samples that are consistent with what we currently know about the thin and thick disks in the solar neighbourhood:

- * alpha-rich disk lagging the alpha-poor disk by some ~40 km/s
- * alpha-rich being kinematically hotter

Chemistry - GESiDr4, solar cylinder R=1 kpc

Dashed line:

Fraction of thick-to-thin disk stars using a 10% normalisation in the plane, and 300 pc and 1000 pc scale-heights for the thin and thick disks, respectively.

Green line:

The observed fraction of thick-to-thin disk stars, using alpha-enhancement as selection criterion

- Milky Way appears to have two distinct disk populations
- The thick disk has a short scale-length
- Galactic scale-length estimates based on chemistry (alpha-enhancement)
- Scale-lengths in external galaxies based on morphology, giving longer thick disk scale-lengths
- Gaia, in combination with results from the large spectroscopic surveys, will allow us to explore the thin and thick disks in terms of ages - kinematics chemistry, throughout the Milky Way

