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Global problems in galaxy evolution

Galaxy formation is a balance between accretion, SF, and outflows. Is over-
cooling still a problem.

However, the balance 1s based on understanding what regulates each and they
are on different scales.

Turbulence has a role over many scales. For example, turbulent injection on
large scales can increase the cooling time and could perhaps play a role in
regulating the gas content, changing this balance.

Turbulence connects phases through a mass, momentum, and energy flow.

Thermal instabilities naturally generates turbulence.

Issues between global heating and local cooling through entropy fluctuations.



Agrees with Abundance matched MWs
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The MW falls within the range of SFH determined through abundance matching. So
it appears OK with 1in situ formation. Snaith et al. (2014)



Disk formation - clumpy, thick disks at high redshift

Clumpy thick galaxies in the UDF ...1 kpc, clumps, 1 kpc, 10” solar masses
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Galaxies at high redshift are increasingly dominated by their gas.
Locally, 10%, about 10 Gyrs ago, 50% of galaxy mass is molecular.



High-z disks form stars intensely

Many distant galaxies have H-alpha surface brightness well above
nearby galaxies. M82-like over 10-20 kpc
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Disks at high-z are intense SFers

Comparison to SPH/N-body simulations...
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High Surface Brightnesses

Disk settling ... velocity dispersion decreasing with redshift ...
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High densities and moderate-high 1onization parameters or lower densities and low
1onization but thicker disks ...

log [NI]/He
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Driving to the line of stability

Interestingly, galaxies appear close to Q~1 ... perhaps coincidental

. but certainly suggestive ....
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Self-regulated star formation?

Toomre criteria, Q =ko/TGX
stars stars

Formally, | |

- +
Q Qstars Q gas

Must assume that ogas ~ fcrStars where f is not
far from 1 (0.2 to 1 is probably OK).

Estimating Zgas by inverting the Schmidt-
Kennicutt relation gives similar results.

It appears that dispersions are what is

necessary to keep the gas near the line of
instability.

Lehnert et al. (2013)



Hypothesis: Schematic Presentation
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Formation of the thick disks

We need to explain the homogeneity of the thick disk ... no specific radial variation
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Can be understood as a strong coupling between the mechanical and
radiative energy into the gas and a momentum exchange between
phases ... need to invoke a cascade of energy, momentum, and phase

Lehnert et al. (2014), see the first arguments for thick turbulent disks at high redshift in Lehnert et al. (2009) and
Lehnert et al. (2013)



Turbulent disks
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Even agrees with the integrated star formation rate of disks ...

for z=0.1, 0.3, 0.8, 1.3, 2, and 3. Lehnert et al. (2014)



Seeing the formation of thick disks

Disks were very turbulent at high redshift. Perhaps several different
causes ...

Energy arguments are almost useless as by definition, there 1s plenty of
energy. Key: determining the dissipation time scale.

Favoring SF for generating turbulence — self-regulation:

The turbulent turnover time 1s ~evolutionary timescale of massive stars.
Uniform metallicity in the thick disk.

Accreted gas has high angular momentum — outer disk (e.g., Danovich
et al. 2015). Use other processes to redistribute it. I favor viscosity.
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