

Bar formation in a cosmological context: a dynamical insight

Tommaso Zana¹, Massimo Dotti², Francesco Haardt¹

(1) Dipartimento di scienza e alta tecnologia, Università degli studi dell'Insubria, Como, Italy, (2) Dipartimento di fisica G. Occhialini, Università degli studi di Milano, Bicocca, Italy

tzana@studenti.uninsubria.it

Abstract

Bars play undoubtedly a fundamental role in disc galaxy evolution. Indeed they can alter considerably the stellar and gaseous distribution if a galaxy is evolving in isolation, exerting in this way a major influence over galactic evolutionary history (Shlosman et al., 1989, Gavazzi et al., 2015).

We present here our first results of a study focused on the causes of bar formation in a cosmological frame: taking advantage of the ErisBH simulation (Bonoli et al. 2016) and of the ChaNGa code (Menon et al., 2015), we numerically investigated the impact that minor mergers can have on disc galaxies. In details, the dominant galaxy in *ErisBH* does form a bar-like structure at low redshift and this allowed us to produce two slightly different initial conditions based on a *ErisBH* snapshot at $z \sim 1.8$. We then analysed the effects of the different merger histories on the development of non-axisymetric features with controlled conditions.

Motivation

Only recently zoom-in cosmological simulation allowed to study the process resulting in the formation of a bar and its feedback on the galactic disc. In particular, *ErisBH* is a high-resolution cosmological hydrodynamical simulation which can resolve the internal structures of

a Milky Way-type galaxy from z = 90 up to z = 0.

At z = 0 the galaxy shows a strong nuclear bar of about 2 kpc in radius which heavily affects the disc dynamics and the star formation rate in the inner region (Spinoso et al. 2016).

Figure 1. Left panel: face-on projection of the central galaxy stellar density in the ErisBH simulation at $z \sim 0.2$. Right panel: frequency plot (Γ is the precessional frequency, Ω is the angular velocity) and stability parameters Q (Toomre parameter) and X (swing amplification parameter). The bar extent is marked by the orange vertical line. (Spinoso et al. 2016).

Tidal interactions

What causes a bar?

Internal secular evolution

Today it's not clear what is the mechanism which triggers bar formation, so we performed these simulations to study the origin of the bar in ErisBH.

The code

ChaNGa is a cosmology simulation application built on the SPH code Gasoline (Wadsley, Stadel, Quinn, 2004) and implemented with the *Charm*++ libraries. *ChaNGa* offers the possibility to examine a wide dynamical range and huge density contrast through the maximal and optimal use of computing resources.

Figure 3 shows the values of the maximum of $A_2(R) = \frac{\left|\sum_j m_j e^{2i\theta_j}\right|}{\sum_{i=1}^{\infty} m_i}$, the second component (m=2) of the Fourier series we used to decompose the stellar mass distribution projected on the galactic plane. The radial position of the maximum is used to estimate the bar extent (Dubinski, Berentzen & Shlosman, 2009).

In addition to the main merger (removed in the second run) we found a second relevant dynamical event due to a fly-by (enlighted in the figure).

The postponed growth of the bar in the second case seems to be related to this event.

Follow ups

1) Deeper analysis of the early bars

2) Repeat the simulation after isolating the fly-by

References

- S. Bonoli, L. Mayer, S. Kazantzidis, P. Madau, J. Bellovary, and F. Governato. Black hole starvation and bulge evolution in a Milky Way-like galaxy. MNRAS, 459:2603-2617, July 2016. doi: 10.1093/mnras/stw694
- Dubinski, I. Berentzen, and I. Shlosman. Anatomy of the Bar Instability in Cuspy Dark Matter Halos. ApJ, 697:293–310, May 2009. doi:10.1088/0004-
- G. Gavazzi, G. Consolandi, M. Dotti, R. Fanali, M. Fossati, M. Fumagalli, E. Viscardi, G. Savorgnan, A. Boselli, L. Guti errez, H. Hern andez Toledo, R Giovanelli, and M. P. Haynes. H α 3: an H α imaging survey of HI selected galaxies from ALFALFA. VI. The role of bars in quenching star formation from z = 3 to the present epoch. A&A, 580:A116, August 2015. doi:10.1051/0004-6361/201425351.

3) Large cosmological run with multiple field disc galaxies

(PRACE in progress)

H. Menon, L. Wesolowski, G. Zheng, P. Jetley, L. Kale, T. Quinn, and F. Governato. Adaptive techniques for clustered N-body cosmological

simulations. Computational Astrophysics and Cosmology, 2:1, March 2015. doi: 10.1186/s40668-015-0007-9

I. Shlosman, J. Frank, and M. C. Begelman. Bars within bars - A mechanism for fuelling active galactic nuclei. Nature, 338:45-47, March 1989. doi:

10.1038/338045a0.

J. W. Wadsley, J. Stadel, and T. Quinn. Gasoline: a flexible, parallel implementation of TreeSPH. New A, 9:137–158, February 2004. doi:

10.1016/j.newast.2003.08.004.