QUENCHING AND MORPHOLOGICAL TRANSFORMATIONS

Physics of Groups Conference @ IAP Mike Hudson, U. Waterloo

EFFECT OF THE ENVIRONMENT

Star-formation quenching via:

- Ram-pressure stripping
 - cold gas
 - hot gas halo
- Winds and
 - "overconsumption"
- Truncation of gas inflow from cosmic web

Morphological transformations via:

- "Harassment"
- Tidal interactions with cluster
- (Mergers?)

Orbits and timescales may help disentangle these effects $\frac{1}{2}$

APPROACH

Use location in projected-phase space (PPS) as a clock

c.f. Gill, Knebe & Gibson 05, Mahajan, Mamon & Raychaudhury 11, Muzzin+14

- Compare data in PPS R_{proj} and V_{los} with N-body orbits
- PPS range includes infalling pre-processed galaxies and groups to be compared with post-processed gals observed at the same time
- Build simple models in which quenching or transformation occurs some delay time after infall
- Fit all galaxy populations simultaneously now:
 - (different from e.g. Wetzel et al. approach)
 - Allows us to isolate the effects of infall into most massive structure

N-BODY SUBHALO ORBIT LIBRARIES

Bertschinger 1985

N-BODY SUBHALO ORBIT LIBRARIES

- Note t=0
 means 2.5 r_{vir}
- $M_{host} > 10^{14}$
- $M_{sat} > 10^{11.9}$
- MultiDark N-body

ORBIT LIBRARIES IN PHASE SPACE

ORBIT LIBRARIES IN PHASE SPACE

ORBIT LIBRARIES IN PHASE SPACE

ORBIT LIBRARIES IN PROJECTED PHASE SPACE

INFALL PDFS IN PHASE SPACE

Oman, MH, Behroozi 13

SDSS QUENCHED FRACTION

SDSS data stacks:

- 625 von der Linden clusters: $M \sim 10^{14}$ -10¹⁵
- 500,000 satellites
- sSFR from Brinchmann/Mendel
 - Split into passive and active
- Plot passive fraction in PPS

Fit parameters:

- quenching delay time
- g-g spread in delay time (small)
- passive fraction after quenching (100%)

Oman & MH 2016

DATA AND MODEL

QUENCHINGTIMESCALE

Oman & MH 2016

COLOURS OF BULGES AND DISKS IN CLUSTERS

Bulges red, but colours show no cluster-centric dependence Disks bluer, show a strong cluster-centric effect

MH, Stevenson et al '10

SDSS QUENCHED FRACTION

Quenching times from disk colours

> Mehmood, MH & Oman in prep

MORPHOLOGICAL TRANSFORMATIONS

- If disk fades due to quenching, then B/T increases
- This fading-induced shift in B/T might be interpreted as a morphological change.
- Our model allows for disk fading and measures additional morphological changes

MORPHOLOGICAL TRANSFORMATIONS

Data in virialized region have a small excess of bulgedominated and a deficit of diskdominated galaxies

MORPHOLOGICAL TRANSFORMATIONS

FUTURE

- Other parameter ranges / environments
 - Satellite mass: lower mass systems more sensitive to environment
 - Host mass: groups (e.g. Yang)
- Use more physical variables (than "time since infall")
 - distance of pericentre
 - maximum ram pressure
- Combine with weak lensing to measure tidal stripping of DM subhalos in PPS
 - CFIS + SDSS/DESI

FUTURE

- Other parameter ranges / environments
 - Satellite mass: lower mass systems more sensitive to environment
 - Host mass: groups (e.g. Yang)
- Use more physical variables (than "time since infall")
 - distance of pericentre
 - maximum ram pressure
- Combine with weak lensing to measure tidal stripping of DM subhalos in PPS
 - CFIS + SDSS/DESI

AGES OF RED GALAXIES AS A FUNCTION OF MASS AND R_{PROI}

Smith, R. J. et al. 2012 MNRAS, arXiv 1108.3836

QUENCHINGTIMESCALE

QUENCHINGTIMESCALE

FUTURE

- Other parameter ranges / environments
 - Satellite mass: lower mass systems more sensitive to environment
 - Host mass: groups (e.g. Yang)
- Use more physical variables (than "time since infall")
 - distance of pericentre
 - maximum ram pressure
- Combine with weak lensing to measure tidal stripping of DM subhalos in PPS
 - CFIS + SDSS/DESI

FUTURE

- Other parameter ranges / environments
 - Satellite mass: lower mass systems more sensitive to environment
 - Host mass: groups (e.g. Yang)
- Use more physical variables (than "time since infall")
 - distance of pericentre
 - maximum ram pressure
- Combine with weak lensing to measure tidal stripping of DM subhalos in PPS
 - CFIS + SDSS/DESI

CANADA-FRANCE IMAGING Survey

r' band

- 5,000 sq. deg
- 0.6 0.7 " median seeing
- r < 24.85 (5 sigma 2'' diameter)
- Dec. > +30 covering SDSS/ BOSS/DESI region lots of
 spectra (>30 m)!
 - group DM
 - satellites DM
 - LSS and filament DM
 - intrinsic alignments

u band

- 10,000 sq deg
- Science: metallicity of stars in halo
- Also photo-z with Euclid

TIDAL STRIPPING IN PPS

SUMMARY

- Galaxy disks start to quench soon (<1 Gyr) after pericentre
 - Weak dependence on satellite mass
 - No obvious dependence on host mass
 - Similar quenching timescales whether estimated by emission lines or colours of disks
 - Suggests ram pressure stripping
 - But then why longer times for smaller mass galaxies? Incomplete stripping?
- Morphological changes follow after the quenching by a Gyr or so (<2 Gyr after pericentre)
 - "Harassment"?
 - Still work in progress