The masses of galaxy groups

Graham P. Smith, University of Birmingham

Chris Haines, Alexis Finoguenov, Maggie Lieu (unpublished work at end of talk) Many colleagues in LoCuSS, and XXL, including some at this meeting: Arif Babul, Jessica Democles, Gus Evrard, Marguerite Pierre, Trevor Ponman, Tatyana Sadibekova

What do we mean by a "galaxy group"?

Lieu, et al., 2016, A&A, 592, A4

Why measure group masses? — connect to halo mass function

- "Weak" connection to the halo mass function:
 - Unbiased estimates of r_∆ to measure physical properties of groups in a selfconsistent manner
- "Strong" connection to the halo mass function:
 - Forward modelling of cluster/group population from a halo mass function
 - Allows self-consistent treatment of nuisance parameters (e.g. halo concentration), modelling of covariance (see Gus's talk)
 - Ultimately, simultaneous modeling of cluster/group physics and cosmology
- Accuracy of the connection to the halo mass function:
 - $r_{\Delta} \propto M_{\Delta}^{1/3} \Rightarrow \delta r_{\Delta}/r_{\Delta} = (\delta M_{\Delta}/M_{\Delta})/3$
 - ⟨δr₅₀₀/r₅₀₀⟩≈0.03 at M₂₀₀>5x10¹⁴M_☉, z<0.3 (Okabe & GPS, 2016, MNRAS, 461, 3794)
 - − Cluster cosmology aim: $(\delta M_{\Delta}/M_{\Delta})\approx 0.01$ for $M_{200}>10^{14}M_{\odot}$ at z<1 next decade
 - Motivated by group/cluster physics, how accurately do we need to calibrate group/cluster masses out to (say) z=1 and down to (say) M₂₀₀=10¹³M_☉?

Example weak connection to the halo mass function: L_X-T_X relation

The measured positive evolution of the XXL L_X - T_X relation is sensitive to the choice of M-T relation used for mass calibration, choice of local reference sample, and details of the selection function.

Giles, et al., 2016, A&A, 592, A3

Q: what do we mean by the "mass" of a galaxy group?

A: a quantity that can be calibrated against underlying halo mass from numerical numerical simulations with minimal/no reliance on the accuracy of the physics in the simulations across a broad redshift range

Hydrostatic mass R.I.P.?

Differences between the hydrostatic mass measurements by leading cluster cosmology groups can be ~50%!

If the X-ray emitting gas in a galaxy cluster is in hydrostatic equilibrium with the gravitational potential:

$$\frac{dP_{\rm gas}}{dr} = -\frac{G\,M_{\rm cl}(\leq r)\rho_{\rm gas}}{r^2}$$

then the mass of the galaxy cluster can be obtained from the density and temperature profiles of the cluster gas:

$$M_{\rm cl}(\leq r) = -\frac{kT}{\mu m_{\rm p}G} \left(\frac{d\ln\rho_{\rm gas}(r)}{d\ln r} + \frac{d\ln T}{d\ln r}\right) r$$

Hydrostatic mass R.I.P.?

"Yes" for putting groups/clusters on absolute mass scale "No" for exploring cluster physics

Applegate, et al., 2016, MNRAS, 457, 1522

Maughan, et al., 2016, MNRAS, 461, 4182

Local Cluster Substructure Survey

A low redshift baseline study of massive galaxy clusters as a cosmological probe and a laboratory for galaxy evolution

A rich multi-wavelength dataset

- Subaru (mainly Gemini exchange time) 50/50, plus 30 more
 - Okabe et al., 2010; Okabe, GPS, et al., 2013; Okabe & GPS, 2016
- X-ray: Chandra ACIS-I for 44/50 and XMM-Newton for 39/50
 - Zhang et al., 2008, 2010; Okabe et al., 2010; Martino et al., 2014
- Sunyaev-Zeldovich Array: 50/50, plus 30 more
 - Marrone, GPS, et al., 2009; Marrone, GPS, et al., 2012
- [Planck: 44/50; all 50 clusters in LoCuSS re-analysis]
 - GPS, et al., 2016, MNRAS, 456, L74; Mulroy, Farahi, et al., in prep.
- HST: WFPC2 and/or ACS observations of 25/50+ that are strong lenses
 - Richard, GPS, et al., 2010; GPS et al., 2010; May et al., in prep.
- Hectospec: 25/50+, and UKIRT/WFCAM, KPNO/NEWFIRM: 50/50+
 - Mulroy, GPS, et al., 2013; Haines et al. 2012, 2013, 2015
- Spitzer/MIPS, Herschel/PACS+SPIRE, GALEX: 25/50+
 - Haines et al. 2009a,b, 2010, 2012, 2013, 2015; GPS et al. 2010a,b

Local Cluster Substructure Survey

Testing hydrostatic equilibrium with Subaru, XMM, and Chandra

M_{WL} suffer ~4% systematic bias:

- 3% galaxy shape bias
- 1% contamination bias
- <1% modeling bias</p>
- Okabe & GPS, 2016

M_{HSE} suffer ~8% systematic error:

- M_{CXO}/M_{XMM}=1.02±0.05
- 8% intrinsic scatter
- Martino et al., 2014, MNRAS, 443, 2342
- Based on the background model of Bartalucci et al., 2014, A&A, 566, A25

GPS, et al., 2016, MNRAS, 456, L74

Local Cluster Substructure Survey

An aside on the reliability of Planck cluster mass estimates

Previous results from WtG and CCCP (after updating to Planck 2015 analysis) are dominated by clusters at z>0.3:

CCCP: $\beta_{\rm P} (z < 0.3) = 0.96 \pm 0.09$ $\beta_{\rm P} (z > 0.3) = 0.61 \pm 0.09$ **~30-40%**WtG: $\beta_{\rm P} (z < 0.3) = 0.90 \pm 0.09$ $\beta_{\rm P} (z > 0.3) = 0.71 \pm 0.07$ **~30-40%**bias at z>0.3

Local Cluster Substructure Survey

GPS, et al., 2016, MNRAS, 456, L74

WL is intrinsically a <~5% bias, ~20% intrinsic scatter mass proxy

Fitting a spherical model to a shear profile biases the cluster mass depending on viewing angle through the (intrinsically triaxial) cluster

Careful choice of fitting radius and method can reduce the bias in a sample of clusters

• Okabe & GPS, 2016, MNRAS, 461, 3794

Dynamical methods are a ~60-100% scatter mass proxy

Old et al., 2015, MNRAS, 1897, 920

see also: Munari, **Biviano**, et al., 2013, MNRAS, 430, 2638; Caldwell, **McCarthy**, et al., 2016, MNRAS, 462, 4117; Farahi, **Evrard**, et al., 2016, MNRAS, 460, 3900

High quality optical data required for accurate mass calibration of "allsky" cluster/group samples will come from directly from LSST and Euclid

X-ray data for testing hydrostatic equilibrium in groups and high-z clusters will rely on pointed followup observations

LSST Overview

[based on Science Requirements Document July 2011]

- US-led project with growing list of international partners:
 - France, UK, China, Chile, Czech Republic, (South Africa?)
- Site, telescope, etc.:
 - 8.4m diameter, f/1.2, telescope on Cerro Pachón
 - 10 square degree field of view, 30 Gpixel detector array
 - capable of 200,000 x 30sec exposures/year [one filter at a time]
 - seeing: FWHM=0.7arcsec (based on DIMM seeing monitoring)
- Survey basics:
 - Southern sky: excellent match to e-ROSITA(DE), 4MOST, ...
 - 30 seconds per filter per visit
 - nominal point source sensitivity per 30 second visit: r_{AB}(5σ)~24.7
 - target survey area: 20,000 square degrees (wide survey)
 - ugrizy-band filters

LSST Overview

[based on Science Requirements Document July 2011]

Steps towards weak-lensing measurements of halo mass

Strong lensing

From data to galaxy shapes
From galaxy shapes to shear
From shear to halo mass

The achilles heal of weak-lensing for halo mass measurement...

It is a formidable challenge to estimate reliably the redshift of $\sim 10^4$ galaxies per cluster that are $\sim 10x$ fainter than the spectroscopic completeness limit.

Using shear signal and richness to select background galaxies

⇒ richness-based background galaxy selection could be promising for group WL studies

Local Cluster Substructure Survey

Okabe & GPS, 2016, MNRAS, 461, 3794

The first weak-lensing mass calibration of galaxy groups

The (first and) second weaklensing M-T relation of groups

Kettula et al., 2015, MNRAS, 451, 1460 see also Kettula et al., 2013, ApJ, 778, 74

Largest weak-lensing calibrated sample of groups and clusters

Difference in mass of a 3keV "group" between X-ray and WL studies suggests hydrostatic bias of ~30%

Lieu, GPS, et al., 2016, A&A, 592, A4 see also Eckert et al., 2016, A&A, 592, A12

A forerunner of LSST science from KiDS...

Kilo Degree Survey (KIDS)

750 degree² in ugri-bands with OmegaCAM on VST

http://kids.strw.leidenuniv.nl/ index.php Stacked weak-lensing density profiles and masses of 1400 optically-selected groups Groups from GAMA; WL data from KiDS Density profiles agree with NFW and M-L relation is consistent with linear Viola et al., 2015, MNRAS, 452, 3529 see also van Uitert et al., arXiv:161004226

WL studies rarely break the massconcentration degeneracy with data

LoCuSS:

 WL-based mass-concentration relation with 13 background galaxies arcmin⁻² (Okabe & GPS, 2016, MNRAS, 461, 3794) [see also CLASH papers]

Typical cluster/group weak-lensing studies:

 5-10 galaxies arcmin⁻², assume concentration is constant (WtG), adopt a (zero scatter) mass-c relation (CCCP, XXL, CFHTLS), stack the signal (KIDS, COSMOS)

Simultaneous fitting of shear profiles and mass-c relation

- Forward hierarchical modeling of individual shear profiles, and mass-c relation of the population from a mass function at fixed cosmology
- Avoids strong assumptions on mass-concentration relation
- Avoids stacking: σ_{InM}^2 controls level of reliance on the population

Lieu, Farr, Betancourt, GPS, McCarthy, Sereno, in prep.

The LoCuSS Groups Sample

- 23 clusters at 0.15<z<0.3 from the LoCuSS sample with deep XMM data (and rich dataset from Hectospec, Subaru, Herschel, Spitzer, GALEX)
- 39 spectroscopically confirmed, X-ray selected, infalling groups
- preliminary mass function consistent with infalling groups from Millennium
- lots of potential to investigate galaxy evolution and physics of infalling groups

Haines, Finoguenov, et al., in prep.

SNR=7.2, z=0.235

r₂₀₀ z=0.2320

SNR=6.0, z=0.236

SNR=8.5, z=0.237

Haines, Finoguenov, et al., in prep. SNR=22, z=0.238

- Absolute mass calibration of groups and clusters must place minimum reliance on physics in simulations
 - weak-lensing delivers a low bias and ~20% scatter absolute calibration of clusters; looks promising for groups!
 - in principle dynamical masses are promising, but scatter is very large (see Gary and Lindsay's talks)
 - X-ray masses only useful for testing HSE
- Large solid angle optical/near-IR surveys (ongoing, and LSST, Euclid) will provide the weak-lensing data "for free"
- Promising avenues to explore:
 - test weak-lensing mass measurement on numerical simulations down to $10^{13} M_{\odot}$
 - richness-based background galaxy selection methods for groups
 - deep pointed X-ray observations of groups with existing high quality weak-lensing data
 - forward modelling of shear profiles and scaling relations including mass-concentration relation

The end