High-redshift major mergers weakly enhance star formation

Collaborators: F. Renaud & F. Bournaud

Context

We know that *local* major mergers trigger galaxy starbursts

Hubble Heritage

Is it also true at high-redshift?

What do I call a starburst galaxy?

Local Universe Starbursts

They all show signs of interactions : LOCAL starburst <-> major merger

See review by Sanders&Mirabel 1996

Guo et al., 2016

Constant number of starbursts over cosmic time

Constant number of starbursts over cosmic time

Schreiber+15 See also Rodighiero+11 and Lofthouse+16

Outline

1/ Star formation bursts in local mergers

2/ Going to high-redshift

Close look-up on the Antennae : SFR = 40 M_{\odot} / yr

Extended star-formation

Star-formation in the nuclei

Star-formation in the overlap

Close look-up on the Antennae : SFR = 40 M_{\odot} / yr

Central gas inflows

Physical processes

1/ Gas inflows increase

See Barnes & Hernquist 1991; Mihos & Hernquist 1996 and review by Bournaud 2010

Close look-up on the Antennae : SFR = 40 M_{\odot} / yr

Compressive turbulence

Central gas inflows

Compressive turbulence + Cloud-cloud collisions

Physical processes

2/ Gas fragmentation increase:

Local mergers summary

- Gas inflows Nuclear starburst
- Compressive tides
- Turbulence

↓ Compressive turbulence

Extended starburst

Star forming galaxies at z=1-3: gas-rich clumpy disks

Star forming galaxies with Mstars= 10^{10-11} at z=1-3:

- Clumpy
- high gas fractions ~50%
- Giant clumps of size ~500pc and stellar masses ~10⁸⁻⁹Msun

High gas fractions and clumps in cosmological simulations

Hopkins et al. 2015, Oklopcic et al. 2016, *FIRE* cosmological simulations

Cosmological simulations show transient clumps

But generally have too low gas fractions in disks

High gas fractions and clumps in cosmological simulations

Same galaxy modeled in isolation with RAMSES, here with the same 20-25% gas fraction.

Sequence lasts 32Myr, shows gas surface density

Here weak feedback (thermal SN only)

<u>Similar behaviour:</u> Short lived clump (patches) along spiral arms

Rapid dissolution *even* with weak feedback, highly sensitive to shear in arms

Clumps can be $\sim 10^{8-9}$ Msun of gas but have time to gather only $\sim 10^7$ Msun of stars.

Bournaud & Fensch in prep.

Clumps sensitive to gas fraction and shear more than feedback

20-25% gas fraction Weak feedback: thermal SN only 50-60% gas fraction / same total mass profile Stronger feedback:

thermal+kinetic SN + HII + radiation P.

Same DM halo, same total gas+star mass distribution Gas/star ratio is the only parameter varied

Bournaud & Fensch in prep.

Simulations

- Spatial resolution of 6 pc
 - Density-based refinement
- Star formation above a density threshold
- Feedback: same as Renaud et al., 2013
 - HII regions ionization (Renaud et al., 2013)
 - Radiative pressure (Renaud et al. 2013)
 - SNe (Dubois & Teyssier 2008, Teyssier et al. 2013)

Simulations with different gas fractions

Same DM halo, same total gas+star mass distribution Gas/star ratio is the only parameter varied

Merger simulations

Star formation rates (SFR)

SFR : x 40

SFR : x 3-5 max.

Star formation rates (SFR)

Star formation rates (SFR)

Physical processes checking-list

Gas inflows \bullet

- Gravitational torques

- Gas fragmentation \bullet
 - Compressive tidesTurbulence

Gas Inflows

1/ Gas inflows:

Strong inflows in gas rich *isolated* clumpy disks from VDI

See alsoDekel+09, Elmegreen & Burkert 2010, Krumholz & Dekel 2011, Bournaud Dekel+12

Gas Inflows

<u>Weak</u> increase in gas inflows

Physical processes checking-list

• 1/ Gas inflows

- Gravitational torques **V** Weaker increase

- 2/ Gas fragmentation
 - Compressive tidesTurbulence

Compressive tides

Turbulence

Pre-merger: Gas-rich <u>more</u>turbulent

(see Förster-Schreiber et al., 2009)

Interactions increase turbulence

> Gas-poor : x 4 Gas-rich : x1.5

Saturation of turbulence increase

Physical processes checking-list

• 1/ Gas inflows

- Gravitational torques 🖌 Weaker increase

2/Gas fragmentation
Compressive tides
Turbulence
Weaker increase

Both mechanisms are <u>less enhanced</u> by the interaction <u>Star formation less enhanced</u>

Density PDFs

Epilogue : ...and feedback ?

Summary

Fensch et al. (submitted) Local major mergers increase:

- Turbulence
- Compressive tides
- Gas inflows

Extended starburst

Nuclear starburst

Does not hold for high gas fraction major mergers:

the gas fraction and clumpy morphology prevent a strong burst of star formation