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By integrating �(Z; t) from a finite but extremely small value up to the critical metallicity, the

Duplat & Villermaux (2008) model can be used to derive a very simple equation for the evolution

of the Z < Zcrit pristine fraction:

dP

dt
= �

n

⌧con
P (1 � P 1/n). (6)

The n = 1 case of this equation was first given in Pan & Scalo (2007). This equation traces the

evolution of P as a function of n and a timescale ⌧con, and these parameters, in turn, are functions

of the turbulent Mach number, M , and the average metallicity of the cell relative to the critical

metallicity, Z/Zcrit (Pan et al. 2012, PS13).

Note that Eq. (6) has the property that if P = 1 then Ṗ = 0 ensuring that pristine cells remain

pristine. There are no metals in such a cell with which to pollute it. As soon as the injection of

polluted material causes P < 1.0 however, the polluted fraction will then continue to decrease.

Including the cell to cell advection handled by ramses and the addition of enriched ejecta material

to a cell the full equation for the evolution of P is

@(⇢P )

@t
+ r · (u ⇢P ) = �

n

⌧con
⇢P (1 � P 1/n) � ⇢̇ejP, (7)

where ⇢ and u are the local density and velocity, and ⇢̇ej is the rate that the density of cell is

increased by the addition of ejecta. The reader may notice that we have omitted the di↵usion

term described by PS13 (Eq. (49) in that work). We have not tried to characterize the numerical

di↵usion inherent in ramses and a proper treatment would need to account for any di↵erence

between it and the di↵usion term in PS13 when computing cell-to-cell di↵usion. We leave this for

a future work.

2.2.2. Locality Parameter and Convolution Timescale

The evolution of P described in Eqs. (6) and (7) depends on a convolution timescale, ⌧con and

the parameter n, which quantifies the locality of mixing. Here we are interested in the case in

which the driving scale of the turbulence and the length scale at which pollutants are added to the

medium (referred to as Lf and Lp in PS13) both occur on the grid scale �x. In this case, as shown

in PS13, the locality parameter as a function of mach number is well fit by

n = 1 + 11 exp

✓
�

M

3.5

◆
. (8)

This means that in subsonic turbulence, pollution is more of a global process, corresponding to

n ⇡ 12, and in highly supersonic turbulence pollution is more local, corresponding to n ⇡ 1, the n

value in Curl’s original model.

Also following PS13, we model the dynamical mixing time as

⌧con =
�x

vt

(
⌧̃con1 if P � 0.9

⌧̃con2 if P < 0.9
, (9)
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ratio

x ⌘ � log10
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◆��1

, (10)

which equals zero when Z/Zcrit = 107 and approach infinity as Z/Zcrit drops to 1. We then obtained

a simple fit to the PS13 simulation results as

⌧̃con1 =

"
0.225 � 0.055 exp

 
�

M3/2

4

!# r
x

5
+ 1,

⌧̃con2 =


0.335 � 0.095 exp

✓
�

M2

4

◆� r
x

3
+ 1,

(11)

if Z/Zcrit > 1 and ⌧con = 1 if Z/Zcrit  1. It is possible for a region with Z > Zcrit to evolve

back to Z  Zcrit due to the advection of (near) pristine material from nearby cells. In this case

we think of mixing as making the cell more pristine, rather than less and evolve the pristine gas

fraction back toward 1 as an exponential function of the cell’s turbulent velocity:

d

dt
(1 � P ) = �(1 � P )

vt
�x

. (12)

We note that the pristine fraction does not always evolve toward 1 immediately once Z < Zcrit.

For example, if the polluted fraction in a cell is below Z/Zcrit, the average metallicity in the polluted

region is still above Zcrit, and thus the pristine fraction in the cell would still be decreasing as the

polluted region mixes with more ambient pristine gas. Roughly speaking, only after the polluted

fraction in a cell exceeds Z/Zcrit, does the pristine fraction starts to evolve toward 1. However,

accounting for this complexity by checking whether the polluted fraction in a cell is above or below

Z/Zcrit does not cause a significant di↵erence from the results using Eq. (12) immediately (when

the average metallicity in a cell drops below Zcrit). We will therefore focus on results from equation

(12).

All the fits above depend on the cells’ turbulent velocity, vt and its ratio to the local sound

speed, M = vt/cs. This velocity can be estimated in turn as vt = ⌫t/�x, where ⌫t is the turbulent

kinematic Eddy viscosity of the scale of the cell, or as vt =
p

2K where K is the subgrid kinetic

energy. Many possible models exist in the literature for the estimate of ⌫t, vt (e.g. Yoshizawa 1986;

Moin et al. 1991; Erlebacher et al. 1992; Vreman et al. 1997) or K (e.g. Schumann 1975; Moeng

1984; Ghosal et al. 1995; Schmidt et al. 2006; Genin & Menon 2010; Scannapieco & Brüggen 2010;

Chai & Mahesh 2012). While a comparison between di↵erent approaches merits further study, here

we adopt the simplest approach, making use of the Eddy viscosity model of Smagorinsky (1963).

A brief overview of the approach used to compute vt follows.

We first compute the numerical velocity gradients across each cell �ivj to determine the local

rate-of-strain tensor

Sij ⌘

1

2
(�ivj +�jvi), (13)

which captures the 3D velocity shear around each cell (Sur et al. 2014). Starting with the

energy in the Kolmogorov inertial spectrum (✏2/3k�5/3), and equating it to the loss of
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kinetic energy in the flow, 2⌫hSijSiji, we have the following:

2⌫hSijSiji = 2✏2/3
Z 1/�x

0
k2 k�5/3dk / ✏2/3�x�4/3 (14)

where we have summed the energy spectrum (in k-space) up to the size of the filter

scale to capture the sub-grid energy. Noting that ✏ / v3t /�x, results in

vt /

p

⌫ |Sij | �x (15)

demonstrating the amplitude of velocity fluctuations on the filter scale is directly

related to the magnitude of the rate-of-strain, as adopted in our simulation and by

Smagorinsky: vt = |Sij | �x.

2.3. Molecular Cooling

Beyond the subgrid model for the pollution of pristine gas described above, we have also

modified ramses to include a simple molecular cooling model; important for low-temperature

cooling in the pristine gas (Johnson & Bromm 2006; Prieto et al. 2008; Hirano & Yoshida 2013).

Our model is analytic and based on the work of Martin et al. (1996), which provides a radiative

cooling rate per H2 molecule, ⇤r/nH
2

, across a range of densities, as depicted in Fig. 3. We truncate

our H2 cooling model above 50,000 K as the contribution of molecular cooling becomes negligible

and molecular hydrogen is highly dissociated above this temperature.

The cooling rate is computed for each simulation cell based on the cell’s density, temperature

and molecular fraction, fH
2

. Our initial H2 fraction is primordial (fH
2

= 10�6; Reed et al. 2005),

we model the Lyman-Werner flux from our star particles as ⌘LW = 104 photons per stellar baryon

(Greif & Bromm 2006) and we assume optically thin gas throughout the simulation volume. We

compute the number of stellar baryons, N⇤,b, by totaling the mass in star particles,

at each simulation step, assuming a primordial composition (X=0.73, Y=0.25). This

results in an updated fH
2

for each simulation step:

fH
2

,new =
(fH

2

,old Ngas � NLW)

Ngas
(16)

where

NLW = N⇤,b ⌘LW (17)

We note the total stellar mass created at the onset of star formation generates enough Lyman-

Werner flux to permeate our simulation volume of 27 Mpc3 h�1 (Johnson et al. 2013; Bromm &

Loeb 2003), destroying all of the molecular hydrogen. We do not model subsequent H2 formation

since cooling becomes dominated by metal lines shortly after the first star particles form and any





z=16



4 6 8 10 12 14 16 18
redshift

-4

-3

-2

-1
lo

g
S

FR
D

[M
�
/y

r/
M

p
c3 ]

Total SFRD
Pop III (Z?  Zcrit)
Classical Pop III

MadauMadau

Madau & Dickenson, 2014

Zcrit = 10-5 Z�



4 6 8 10 12 14 16 18
redshift

-4

-3

-2

-1
lo

g
S

FR
D

[M
�
/y

r/
M

p
c3 ]

Total SFRD
Pop III (Z?  Zcrit)
Classical Pop III

Zcrit = 10�4Z�

Zcrit = 10�6Z�

Zcrit = 10�4Z�

Zcrit = 10�6Z�

Zcrit = 10-5 Z�



z=8



z=8



z=8





No expensive chemical evolution runs 
Explore possible progenitor yield models without re-running

Heger and Woolsey, 2002, Heger; StarFit 2016

NUCLEOSYNTHESIS IN POPULATION III 541

low a density for much additional electron capture or posi-
tron decay (Arnett & Truran 1969 ; Truran & Arnett 1971 ;
Arnett 1973).

This neutron deÐciency imprints a distinctive signature
on the nucleosynthesis of Population III pair-instability
supernovae that is even more extreme than seen in metal-
free stars of lower mass.

3.3. Integrated Nucleosynthesis
In Figure 3, the individual isotopes in Table 1 have been

summed, divided by the mass ejected (equal to the mass of
the star in the present study), and the resultant elemental
mass fraction integrated over an estimated Salpeter-like
(Salpeter 1959) IMF for the assumed progenitor stars of the
helium cores (° 3.1) and divided by their solar mass fraction.
We show the result of this integration for three di†erent
slopes, c \ [0.5, [1.5, and [3.5 of the IMF, where c is
deÐned by the number of stars formed per mass interval,
c 4 1 ] d log N/d log M. The ““ dot ÏÏ indicates the middle
value, connected by lines, and the ““ thick ÏÏ and ““ thin ÏÏ ends
of the triangle show the shallower and steeper IMF slopes,
respectively.

The results, shown in Figure 3, are not very sensitive to
the slope of the IMF since we are only studying stars in a
limited mass range (a factor of 2 from the lowest to the
highest mass considered). The dependence of the integrated
production factor on the element number Z shows the odd-
even e†ect discussed in ° 3.2 and quantiÐes it to be from 1
order of magnitude for iron group elements to 2 orders of
magnitude for some of the intermediate-mass elements. The
iron group shows a smaller e†ect because of the weak inter-
actions that occur in the central regions of the more massive
cores because they reach high density during their bounce.

Given the unusual nature of the synthesis site (pair insta-
bility supernovae are not generally thought to be the domi-
nant site where solar abundances were produced), the
overall approximate agreement of the yields with the solar
abundances of elements with even charge is somewhat sur-
prising. The nuclear properties of the elementsÈtheir
binding energies and cross sectionsÈare apparently as

FIG. 3.ÈProduction factors for very massive stars (helium cores of
65È130 corresponding to initial masses of D140È260 integratedM

_
, M

_
)

over an IMF and compared to solar abundances as a function of element
number Z. The integration assumed a Salpeter-like IMF with three di†er-
ent exponents : [0.5 (thick end of triangle), [1.5 (solid dot), and [3.5 (thin
end of triangle).

important as the stellar environment. However, there are
di†erences. For example, Si and S are overabundant com-
pared to O, Fe, and Mg. As noted in ° 3.2, elements above
Ni are essentially absent. Above Ge, the numbers are all
below the lower bound of the plot, and their abundance
decreases exponentially with mass number.

This conÑicts with observations that show appreciable
r-process elements present even in very metal-deÐcient stars
(see, e.g., Burris et al. 2000), at least for [Fe/H] Z [2.9.
Since we believe that the r-process requires neutron starsÈ
one way or anotherÈfor its production, the synthesis of
elements by lower mass stars must also be considered. That
is, no matter what the IMF for Population III, abundances
at could not have been made solely by pair-[Fe/H] Z [3
instability supernovae.

Also, lacking any hard evidence of what the IMF for
Population III was like, one cannot preclude a truncation
somewhere within the mass range MHe \ 64, . . . , 133 M

_
.

Taking away the stars above could clearlyMHe \ 90 M
_give an arbitrarily large production factor for oxygen and

intermediate-mass elements compared to the iron group.
To explore further the consequences of an admixture of

lighter Population III stars, we included in our integration
the yields of the ““ Z series ÏÏ of Population III supernovae
studied by Woosely & Weaver (1995), metal-free stars in the
mass range 12È40 Figures 4 and 5 show the conse-M

_
.

quences of including these stars with two di†erent choices of
explosion energy. For larger explosion energies, less fall-
back occurs, and more iron group elements are ejected. In
the higher mass stars that tend to make black holes, more
explosion energy ejects more heavy elements of all kinds.
This explains the di†erence between Figures 4 and 5. We
also assume, as the calculations suggest, that for reasonable
supernova energies, no heavy elements are ejected in the
explosion of Population III stars over 40 (Fryer 1999).M

_

FIG. 4.ÈProduction factors for massive stars (12È40 dotted line,M
_

;
open triangles) integrated over IMF and compared with solar abundances
as a function of element number. The yields are taken from Woosely &
Weaver (1995), and in this plot we use the low explosion energy primordial
models of the ““ A ÏÏ series, Z12A, Z15A, . . . . The solid line and Ðlled tri-
angles give the same integration but also including exploding very massive
stars (D140È260 In the mass range 40È100 essentially the wholeM

_
). M

_helium core falls into a black hole, ejecting only the unprocessed envelope.
In the mass range 100È140 some of the outer layers of the helium coreM

_may be ejected, adding to the carbon and oxygen yields and maybe a little
to the neon and magnesium yields but not to the heavier elements. The
IMF is assumed Salpeter-like with an exponent of [1.5.
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polluted (95%) and the fraction of primordial metals, 0.13, is much lower than in the earlier halo.

However, looking at stars in the range 10�2.7Z� < Z?  10�1.8Z� we again see a population of Pop

II stars with a high fraction of primordial metals. These most likely represent an older population

that was mostly polluted with Pop III material, which are likely good CEMP candidates. We also

note another large Pop III group of stars born in largely unmixed gas with Z � 10�1.1Z�. In fact,

99% of the stars in these star particles are pristine. For comparison, Table 2 captures some of the

relevant characteristics of the two halos we have been discussing. Here, a bar above the metallicity

indicates a mass-weighted average taken over all stars in the halo.

Finally, we examine the evolution of the metallicity of our star particles in aggregate. Figure

11 depicts the evolution of the mass-weighted probability density function (PDF) for our star

particles, with the primordial metal fraction, ZP,?/Z? plotted against the corrected metallicity,

Z?. As expected, as metallicity increases the fraction of primordial metals decreases (at every

epoch) giving the plots their characteristic negative slope. By redshift 5, the majority of the stars

have metallicities in the range 10�1.8Z� < Z? < 10�0.5Z�. As we move to extremely metal poor

populations, Z? < 10�3, the negative slope of our PDF indicates that the fraction of primordial

metals increases as overall metallicity decreases such that the most stars have ZP/Z? > 10�1.

These Population II stars are likely CEMP candidates. Furthermore the distribution of stars with

Z? < 10�1.5 Z�, remains roughly constant below z = 6 indicating that most of the low metallicity

stars, including those with a high fraction of primordial metals, have been formed before this epoch.

As in previous diagrams, we have used the upper bound for the corrected metallic-

ity. For comparison, the lower left plot, annotated ‘Uncorrected’, shows the e↵ects of not making

the polluted fraction correction to the metallicity at z = 5. The fpol correction is greatest for

star particles with Z? . 10�3.5 since these were contaminated by material with both a low average

metallicity and a small fpol. Without this correction we would predict a larger number of stars with

metallicities near Zcrit, while the corrected results show very few stars enhanced to values below

10�4Z�. The correction also shifts the population of purely primordial star particles, ZP/Z? = 1 at

z = 5, away from very low metallicities, concentrating them in the range 10�3Z� < Z? < 10�1Z�.

While stars in this metallicity range are not extremely metal poor, they do possess a large fraction

of primordial metals and may represent an important iron-poor stellar population.

For comparison, we include PDF plots for the lower bound on the correction to

Z?. As can be seen in Figure 12, if we assume that the maximum amount of metals in
Table 2. Halo characteristics

Total Pop III Classic PopIII
Redshift M/M� M/M� Pop III hZ?ia hZP,?/Z?ib

16 5.35⇥ 105 3.04⇥ 105 0.300 3.07⇥ 10�3 0.988
8 1.45⇥ 106 6.19⇥ 105 0.714 1.53⇥ 10�2 0.322

amass-weighted average metallicity for all stars in the halo.

bmass-weighted average primordial metal fraction for polluted stars in the halo.
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Table 3. Mass fractions of metals

X/Z X/ZP

Element 1Gy 60M� Pop III SN

C 1.68 ⇥10�1 7.11 ⇥10�1

O 5.29 ⇥10�1 2.73 ⇥10�1

Mg 2.49 ⇥10�2 9.56 ⇥10�4

Ca 3.00 ⇥10�3 1.43 ⇥10�7

Fe 5.39 ⇥10�2 2.64 ⇥10�12

Note. — The mass fractions of metals for selected el-

ements used to model the normal and primordial metal-

licity of star particles in our simulation. Data for gas

typical of 1Gyr post BB provided by Timmes (2016).

Data for 60M� Pop III SN provided by Heger (2016).
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