

Pollution of the pristine gas

• Why?

- Effects on Pop III SFRD
- Transition to normal star formation...
- Considerations
 - Asymmetrical SN blast/Distribution of metals
 - Pre-SN stellar structure
 - Clumpy, turbulent, etc.
 - Turbulent mixing !
- Turbulence is resolved at scales > resolution scale
 - Typical scales of 10-1000 pc
- What about subgrid scales?
- Our approach
 - Turbulence is unresolved but we can still characterize mixing at *subgrid* scales

Modeling Turbulence...

Pan, ES, & Scalo (2012,2013)

Dynamical mixing time...

Parameters: Δx , Z, v_t , c_s

Z : The average metallicity of the cell

Pan, et al. 2013

Dynamical mixing time...

$$\tau_{\rm con} = \frac{\Delta x}{v_t} \begin{cases} \tilde{\tau}_{\rm con1} & \text{if } P \ge 0.9\\ \tilde{\tau}_{\rm con2} & \text{if } P < 0.9 \end{cases},$$

$$\tilde{\tau}_{\text{con1}} = \left[0.225 - 0.055 \exp\left(-\frac{M^{3/2}}{4}\right) \right] \sqrt{\frac{x}{5} + 1},$$
$$\tilde{\tau}_{\text{con2}} = \left[0.335 - 0.095 \exp\left(-\frac{M^2}{4}\right) \right] \sqrt{\frac{x}{3} + 1},$$

$$x \equiv -\log_{10}\left(\frac{\overline{Z}}{10^7 Z_{\rm crit}}\right) \left[\log_{10}\left(\frac{\overline{Z}}{Z_{\rm crit}}\right)\right]^{-1}$$

$$v_t = |S_{ij}| \Delta x.$$

Pan, et al. 2013

New RAMSES scalars

- $v_{\rm t}$ turbulent velocity
 - Based on a Smagorinsky's formulation
 - gas
- P pristine gas fraction
 - tracks the fraction of gas in each cell $Z < Z_{crit}$
 - both gas and star particles
- Z_P primordial metal fraction
 - tracks the fraction of metals in the cell that come from Pop III SN
 - both gas and star particles

Gas characteristics ...

SFRD – With/Without Mixing

Madau & Dickenson, 2014

Varying Z_{crit}...

Correcting SP Z with the polluted fraction

So what?

- SPs have two kinds of metallicity:
 - Z Corrected metallicity
 - Z_P Primordial metallicity
- Combine Z and Z_P to model composition of SPs
- Tie progenitor models to observations – quickly!

No expensive chemical evolution runs Explore possible progenitor yield models without re-running

Heger and Woolsey, 2002, Heger; StarFit 2016

MW Halo CEMP Stars

Keller et al. 2014, Heger (StarFit) 2016, Timmes, 2016

Conclusions...

- New technique for modeling subgrid turbulence in a cosmological context
 - Inexpensively track mixing of pollutants at subgrid scales
 - Efficiently track two kinds of pollutants with different characteristics -
 - Far less cost than following detailed chemical evolution still evaluate specific yield models
 - Quickly determine which progenitor models show promise wrt observations
 - Improved (?) Pop III SFRD model
 - Future work
 - Predictions for the luminosity function/observational characteristics of high-z galaxies

Backup slides

Halo characteristics...

Table 2. Halo characteristics					
Redshift	Total $_{M/M_{\odot}}$	$\operatorname{PopIII}_{M/M_{\bigodot}}$	$\frac{\text{Classic PopIII}}{\text{Pop III}}$	$\langle Z_{\star} \rangle^{\mathrm{a}}$	$\langle Z_{\mathrm{P},\star}/Z_{\star} \rangle^{\mathrm{b}}$
$\frac{16}{8}$	$5.35 imes 10^{5} \ 1.45 imes 10^{6}$	$3.04 imes 10^{5} \ 6.19 imes 10^{5}$	$\begin{array}{c} 0.300 \\ 0.714 \end{array}$	3.07×10^{-3} 1.53×10^{-2}	$\begin{array}{c} 0.988 \\ 0.322 \end{array}$

^amass-weighted average metallicity for all stars in the halo.

^bmass-weighted average primordial metal fraction for polluted stars in the halo.

Other Pop III progenitor models

Yields, ISM

Table 3. Mass fractions of metals

Element	X/Z 1Gy	X/Z_P $60M_{\odot}$ Pop III SN
С	1.68×10^{-1}	7.11×10^{-1}
О	5.29×10^{-1}	2.73×10^{-1}
Mg	2.49×10^{-2}	9.56×10^{-4}
Ca	3.00×10^{-2}	1.43×10^{-12}
re	5.39 ×10 -	2.04×10^{-12}

Note. — The mass fractions of metals for selected elements used to model the normal and primordial metallicity of star particles in our simulation. Data for gas typical of 1 Gyr post BB provided by Timmes (2016). Data for $60M_{\odot}$ Pop III SN provided by Heger (2016).

Uncertainty in corrected metallicty

- Uncertainty in the metallicity of the pristine fraction
- We only know it is < Z_crit
- Early on, we know Z ~ o.o
- Can bound the correction to get Z ...

Cooling in pristine gas

• H₂

• Based on data from Martin et al, 1996

