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Feedback from AGN
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Two Main Modes of AGN feedback
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Quasar Feedback in Simulations

Heating of the surrounding gas

With thermal input

Modification of the internal energy

Increasing of the gas temperature by
uniformly distributing the specific energy

Similar to: Di Matteo et al., 2005,
2008; Sijacki et al., 2007; Booth &
Schaye, 2009; Teyssier et al., 2011

Teyssier et al., 2011
z= 0.519803
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Quasar Feedback in Simulations

Heating of the surrounding gas

With thermal input

Modification of the internal energy

Increasing of the gas temperature by
uniformly distributing the specific energy

Similar to: Di Matteo et al., 2005,
2008; Sijacki et al., 2007; Booth &
Schaye, 2009; Teyssier et al., 2011

Sub-grid models should rely on a number of assumptions
regarding the coupling between the radiation and the gas:
* absorption of photons

« opfical depth

* mean free paths

* self-shielding



Modelling a Quasar in a Multiphase ISM

How efficiently do photons couple to gas?

How does radiation couple gas and drive large-scale winds?

Which photons are most relevant for driving a wind?

Bieri et al. 2016b; arXiv:1606.06281, accepted for publication in MNRAS



Radiation Hydrodynamics

RAMSES-RT: Uses moment method to solve radiative transfer in RAMSES
(Rosdahl et al. 2013, Rosdahl & Teyssier 2015)

Solves non-equilibrium evolution of ionisation fractions of HIl, Hell, Helll
Radiation pressure + diffusion of multi-scattering IR radiation included

Solar metallicities, assuming all metals are locked in dust
o0 : 1 _2 .
Dust opacities ~p uv 000 g cm fD. 1R one Uy = 0 if T > LOPK

RKD,IR = 10 gcm_2

Reduced speed of light approximation creq = 0.2¢

(Gnedin & Abel 2001) . 1o gravity Emission and propagation of photons and their

* no cooling interaction with the gas via the dust is self-
* no time variability  consistently described



Quasar Spectral Energy Distribution

AGN luminosity: 10% erg/s
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| Galaxy radius: 1.5 kpc

Galaxy height: 0.2 kpc
Log-normal pdf for gas density Galaxy mass: 2.1 x 10'0 Msy
Kolmogorov-like power spectrum (and different cloud size) 5pc resolution in the galaxy
Initial conditions from Wagner & Bicknell (2011)

Realistic representation of a generic turbulent multi-phase interstellar medium (ISM)
of a gas-rich high-redshift galaxy in terms of density structure and clumps size
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Density Evolution Driven by Radiation
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Density Evolution Driven by Radiation
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Large Velocifies & Mass Outflow
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* Gas reaches velocities of up to 1000 km/s
* The highest velocity gas shows an anti-correlation with density.

* Mass outflow rates are up to 1000 Mgun/yr
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Led6 bigC
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Optical Depth and Cloud Destruction

Optical depth
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* Optical depths are between 10 and 100
depending on cloud size




Optical Depth and Cloud Destruction

Optical depth
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* Optical depths are between 10 and 100
depending on cloud size

» Covering fraction depends on cloud size
but generally drops quickly




log(p/(L/c))
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Mechanical Advantage

log(p/(L/c))
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n < 1 momentum loss due to inhomogeneities in the gas

The non-uniform structure of the ISM and subsequent building of low density
channels as well as destruction of central cloud leads to loss of momentum




How Does Radiation Drive a Wind?
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Mechanical Advantage From Groups
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* Photoionisation has small but non-negligible effect



Mechanical Advantage From Groups
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* Optical photons give small contribution to the momentum



Mechanical Advantage From Groups
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* Optical photons give small contribution to the momentum

* Through multi-scatterings on the dust, IR radiation imparts many

times a momentum Lgroup/c onto the gas



Mechanical Advantage From Groups

medC simulation
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Photoionisation has small but non-negligible effect
Optical photons give small contribution to the momentum

Through multi-scatterings on the dust, IR radiation imparts many
times a momentum Lgroup/c onto the gas

Main contribution to the total momentum from UV+optical comes
from reprocessed UV photons into IR




Mechanical Advantage From Groups

medC simulation
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Photoionisation has small but non-negligible effect
Optical photons give small contribution to the momentum

Through multi-scatterings on the dust, IR radiation imparts many
times a momentum Lgroup/c onto the gas

Main contribution to the total momentum from UV+optical comes
from reprocessed UV photons into IR




Effect of Reduced Speed of Light

* Rationale: as long as the radiation travels faster then ionisation fronts, the results of
RHD simulations are more or less converged with respect to the reduced speed of light

: A IR radiation is not photo-ionising — not obvious whether a reduced speed of light
produces converging results, especially when IR trapping becomes important




Effect of Reduced Speed of Light

* Rationale: as long as the radiation travels faster then ionisation fronts, the results of
RHD simulations are more or less converged with respect to the reduced speed of light

: A IR radiation is not photo-ionising — not obvious whether a reduced speed of light
produces converging results, especially when IR trapping becomes important
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s ==




Effect of Reduced Speed of Light

* Rationale: as long as the radiation travels faster then ionisation fronts, the results of
RHD simulations are more or less converged with respect to the reduced speed of light

: A IR radiation is not photo-ionising — not obvious whether a reduced speed of light
produces converging results, especially when IR trapping becomes important
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Mechanical advantage is smaller than theoretically inferred (10%)

Conclusion for Radiation Driven Quasar

Radiation-driven feedback has most effect on galaxies with large clouds

Radiation manages to drive a radiatively-driven wind mainly because of IR multi-scattering

(needs however to be confirmed with more realistic simulations)

Be careful with your choice of reduced speed of light!
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