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We use the two-point correlation function in redshift space, �(s), to study the clustering of
the galaxies and groups of the Nearby Optical Galaxy (NOG) Sample, which is a nearly
all-sky, complete, magnitude-limited sample of �7000 bright and nearby optical galaxies.
The correlation function of galaxies is well-described by a power-law, �(s) = (s=s0)

� , with
 � 1:5 and s0 � 6:4 h�1 Mpc. We �nd evidence of morphological segregation between
early- and late-type galaxies, with a gradual decreasing of the strength of clustering from
the S0 to the late-type spirals, on intermediate scales. Furthermore, luminous galaxies (with
MB � �19:5 + 5 log h) are more clustered than dim galaxies. The groups show an excess of
clustering with respect to galaxies. Groups with greater velocity dispersions, sizes, and masses
are more clustered than those with lower values of these quantities.

1 Introduction

Following a series of studies (Marinoni et al. 13, Marinoni et al. 14, Giuricin et al. 6; Marinoni et
al. 12) in which we investigate on the large-scale galaxy distribution in the nearby universe by
using a nearly all-sky sample of optical galaxies, in this paper we analyze the clustering of the
galaxies and groups of the Nearby Optical Galaxy (NOG) sample (Giuricin et al. 6).

The NOG is a complete, distance-limited (cz � 6000 km/s) and magnitude-limited (B � 14
mag) sample of � 7000 nearby and bright optical galaxies, which covers � 2=3 (jbj > 20Æ) of
the sky (8.27 sr). The degree of redshift completeness of the NOG is estimated to be 97%. The
B-magnitudes are homogenized total blue magnitudes transformed to the standard system of
the RC3 catalog (de Vaucouleurs et al. 3) and fully corrected for Galactic extinction, internal
extinction, and K-dimming. Groups have been identi�ed within the NOG by means of the
hierarchical (H) and percolation (P) algorithms. About 45% of the NOG galaxies were found to
be group members.

In this paper we use the redshift-space two-point correlation function to analyze the cluster-
ing of the NOG galaxies (7028 galaxies with cz � 50 km/s), the NOG H groups (474 groups with
at least three members), and the NOG P groups (506 groups with at least three members). Here
we analyze the P groups obtained with the variant of the P algorithm in which the distance link
parameter, corresponding to a minimum number density contrast of 80, is scaled with distance
(it is 0:67 h�1 Mpc at 4000 km/s), whilst the velocity link parameter is kept constant at the
value of 350 km/s (here we adopt H0 = 100 h km s�1 Mpc�1). The variant of the P algorithm



in which both link parameters are scaled with distance leads to very similar groups (see Giuricin
et al. 6 for details on group selection).

Almost all NOG galaxies (98.7%) have a morphological classi�cation. We divide NOG
galaxies into two broad morphological bins, early-type galaxies (E-S0, T < �1:5) and late-type
galaxies (Sp, T � �1:5) and into six �ne morphological bins, E (T < �2:5), S0 (�2:5 � T <
�1:5), S0/a (�1:5 � T < 0:5), Sa (0:5 � T < 2:5), Sb (2:5 � T < 3:5), and later types (hereafter
denoted as Scd). The earliest bin, hereafter denoted simply as E, comprise also lenticulars, since
it contains also objects broadly classi�ed as E-S0.

2 Calculating the Two-point Correlation Function

We calculate the two-point correlation function in redshift space, �(s), using the estimator
of Hamilton 8. We generate the random sample by �lling the sample volume with a random
distribution of the same number of points as in the data. The random points are distributed in
depth according to the sample's selection function S(s) which expresses the fraction of objects
that are expected to satisfy sample's selection criteria.

For magnitude-limited samples we calculate the weighted correlation function by replacing
the counts of pairs with the weighted sum of pairs,

P
wiwj , which takes into account the selection

e�ects acting on the sample used. The weighting scheme we adopt is that of equally weighted
volumes, wi = 1=S(si).

We calculate the selection functions of the whole sample of galaxies and of speci�c morpho-
logical subsamples in terms of their Schechter-type luminosity functions that we derive using
redshifts as distance indicators (see Marinoni et al. 14 for details).

As for groups, we have veri�ed that the redshift distribution of the relatively rich groups
are shifted to smaller values than that of galaxies. However, the redshift distributions of the
magnitude-limited samples of P and H groups with at least three members are not signi�cantly
di�erent from that of galaxies. Therefore, we use the conservative approach of computing their
�(s) by assuming the same selection function adopted for galaxies. The same assumption was
made by Ramella et al. 16, Trasarti-Battistoni et al. 18 and Girardi et al. 4 in the calculation of
the group correlation function.

A di�erent approach used sometimes in the literature (e.g., Carlberg et al. 2; Merch�an et

al. 15) to generate a random distribution of groups is to follow directly the observed redshift
distribution of groups as if they were unclustered. However, this approach is conceptually
questionable, since the results are sensitive to the clustering pattern that is present.

Interestingly, the direct derivation of the selection function of haloes hosting the whole hier-
archical sequence from single galaxies to clusters (the catalogs of all galactic systems extracted
from the NOG) is recently discussed by Marinoni et al. 12. In an upcoming paper we will use
this statistics to infer the correlation function of the halo distribution.

Moreover, we analyze volume-limited samples, which by de�nition contain objects that are
luminous enough to be included in the sample when placed at the cuto� distance. This leads to
uniformly selected data sets in which the same weight is assigned to each object.

Speci�cally, we extract volume-limited samples of galaxies at di�erent depths. For instance,
the volume-limited samples at depths of 6000 (4000) km/s contain 2258 (1895) galaxies which
are brighter than the magnitude limits of MB = �19:89(�19:01)+ 5 log h.

We further construct volume-limited samples of P and H groups with depth of 4000 km/s,
by using suitably modi�ed versions of the H and P algorithms in which the selection parameters
which scale with distance are kept �xed at the values corresponding to 4000 km/s. These
volume-limited samples contain 140 H and 141 P groups with at least three members.

We average the results obtained using many di�erent replicas of the random sample (in
general 50 replicas in the case of galaxies and 400 in the case of groups).
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Figure 1: The redshift-space galaxy correlation function from the whole NOG; 1� error bars are shown.

We calculate the errors for the correlation function by using 100 bootstrap resamplings of
the data (e.g., Ling et al. 10).

Since, in general, �(s) is well described by a power law over a fairly large interval of s, we
always �t �(s) to the form �(s) = (s=s0)

� with a non-linear weighted least-squares method in
the intervals where �(s) is reasonably �tted by a single power law.

3 The Correlation Function of NOG galaxies

3.1 Results from the whole NOG

Fig. 1 shows the redshift-space correlation function from the whole NOG (1 � error bars are
shown). From a power-law �t calculated in the interval 2:7� 12 h�1 Mpc, we �nd a correlation
length of s0 = 6:42� 0:11 h�1 Mpc and a slope  = 1:46 � 0:05. On small scales (s < 2 h�1

Mpc) �(s) tends to atten because of the e�ects of peculiar motions, whereas on large scales
(s > 15 h�1 Mpc) it tends to steepen.

The NOG �(s) is in good agreement with the results of most redshift surveys of optical
galaxies (especially the LCRS, see Tucker et al. 19), which are characterized by very di�erent
geometries, volumes and selection criteria (see, e.g., Willmer et al.21 and references cited therein).
We derive a smoother �(s) than previous works probing larger volumes (see, e.g., the results
coming from the Stromlo-APM (Loveday et al.11) and Durham-UKST (Ratcli�e et al.17) redshift
surveys), because the NOG contains a larger number of galaxies.

The agreement between di�erent galaxy correlation functions derived for a wide range of
volumes and sample radii is in contrast with the fractal interpretation of the galaxy distribution
in the universe.
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Figure 2: Comparison of the correlation functions for the E, S0, S0/a, and Sa morphological types. For the sake
of clarity, 1� error bars are shown for the last sample only. The number of objects is indicated.

3.2 Morphological segregation

Subdividing the NOG into several morphological types, we note a pronounced morphological
segregation between the E-S0 galaxies (N = 1036), characterized by s0 � 11:1� 0:5 h�1 Mpc
and  � 1:5� 0:1, and the Sp objects (N = 5899), characterized by s0 � 5:6� 0:1 h�1 Mpc and
 � 1:5 � 0:1). More speci�cally, there is a gradual increase of the strength of clustering from
the Scd to the S0 objects, especially on intermediate scales, but this tendency does not extend
to the earliest types which do not show a greater degree of clustering than the S0s (see Figs 2
and 3).

Contrary to some recent claims (Hermit et al. 9; Willmer et al. 21) the relative bias factor (�
1.7) between early- and late-type objects appears to be constant with scale.

3.3 Luminosity segregation

We analyze di�erent volume-limited samples of galaxies at di�erent depths to search for lu-
minosity segregation within a given sample. We �nd that the luminous galaxies (both early
and late types) are more clustered than the dim objects. The luminosity segregation starts to
become appreciable only at relatively high luminosities (MB � �19:5 + 5 log h, i.e. L � 0:6L�)
and is independent on scale (at least up to 10 h�1 Mpc). Our results are in line with a series of
papers which reported evidence of luminosity segregation, although there is little consensus in
the literature about the range of morphological types and luminosities at which the e�ect occurs
(e.g., cf. Loveday et al. 11 and Willmer et al. 21).

The very luminous galaxies (MB � �21+5 log h; L � 2:4 L�) reside preferentially in binaries
and groups (though not in clusters) and are characterized by s0 � 12 h�1 Mpc.
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Figure 3: Comparison of the correlation functions for the Sa, Sb, and Scd morphological types. For the sake of
clarity, 1� error bars are shown for the �rst sample only. The number of objects is indicated.
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Figure 4: Comparison of the correlation functions for the galaxies, P groups, and H groups; 1� error bars are
shown for the H groups only.

The morphological and luminosity segregations appear to be two separate e�ects. The fact
that they are detected also on large scales favors the interpretation that, on scales greater than
� 1 Mpc, the bulk of these e�ects is likely to be mostly primordial in origin, i.e., inherent in
schemes of biased galaxy formation (e.g., Bardeen et al.1) and not induced by late environmental
e�ects.

4 The correlation function of NOG groups

The NOG P and H groups (with at least three members) are in general poor systems with
typical (median) internal velocity dispersion of � 100 km/s, a virial radius of � 0:8 h�1 Mpc, a
virial mass of 7 � 1012 h�1 M�, with the former groups being, on average, slightly more massive
and smaller in size than the latter ones (see, e.g., Tucker et al. 20 and Girardi & Giuricin 5 for
an overview of the properties of other catalogues of groups).

In Fig. 4 we show the weighted correlation functions of the H groups and P groups (with
at least three members) compared to that of all galaxies. On small scales (< 3:5 h�1 Mpc), the
group correlation functions start dropping because of the anti-correlation due to the typical size
of groups.

The correlation functions of the P and H groups show greater amplitudes than that of
galaxies with an excess of clustering by a factor � 1:5 and � 2, respectively. Although the
two samples of groups are signi�cantly di�erent in the distributions of the above-mentioned
dynamical quantities, they show similar clustering properties, at least on intermediate scales
(s < 10 h�1 Mpc).

Power-law �ts over the interval 3:5 � s � 20 h�1 Mpc give s0 = 7:8 � 0:7 h�1 Mpc,



 = 2:0 � 0:2 and s0 = 8:4 � 0:7 h�1 Mpc,  = 1:3 � 0:2, respectively. Thus, groups appear
to have a degree of clustering intermediate between galaxies and clusters. Our results are in
good agreement with those by Girardi et al. 4, who reported a similar excess of clustering for
the groups identi�ed in the CfA2 and SSRS2 redshift surveys. (see Girardi et al. 4 for earlier
controversial results on the group correlation function).

We use the volume-limited samples of P and H groups at the depth of 4000 km/s to explore
the dependence of the strength of clustering on some properties of groups. We �nd that groups
with greater internal velocity dispersions, virial radii, mean pairwise member separations, and
virial masses, tend to be more clustered than those with lower values of these quantities. On
the other hand, there is no di�erence in the degree of clustering between groups with small and
large proportions of early-type galaxies and with long and short crossing times.

Further details on the clustering analysis of the NOG sample will be presented in Giuricin
et al. 7. Work on redshift-space distortions in the NOG is in progress.
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