Recovering WMAP quadrupole and octopole

Anže Slosar (University of Ljubljana)

In collaboration with Uroš Seljak (University of Princeton)

IAP CMB Meeting, Paris 04

1 – Introduction

Quadrupole and Ocutpole:

- Both have seemingly low amplitude
- Various claimed alignments between:
 - quadrupole and octopole
 - with ecliptic plane
 - with galactic plane
- Most tests require full-sky map
- The ILC/TOH map not ideal note WMAP team warning
- Since there is no beliveable full-sky map, need *realisations* of the sky compatible with data
- Tests can then be performed on these realisations to infer confidence limits.

2 – Introduction II

- A full-sky map can be inverted to give $a_{\ell m}$ s.
- Sky cuts and foregrounds result in a *probability distribution* $p(a_{\ell m})$.
- How do we calculate it?

3 – Calculating $p(a_{\ell m})$

- A model map can be constructed $\mathbf{d}_t = \sum_{\ell,m} a_{\ell,m} Y_{\ell m}$
- Probability $p(a_{\ell m})$ is the probability that a $d d_t$ is a possible noise realisation.
- Therefore

$$\log p(a_{\ell m}) \propto (\mathbf{d} - \mathbf{d}_t)^{\mathrm{T}} \mathbf{C}^{-1} (\mathbf{d} - \mathbf{d}_t)$$
(1)

- The covariance matrix ${f C}$ contains:
 - "Noise" due fluctuations in higher multipoles assume fiducial PS
 - Instrumental noise (diagonal)
 - Marginalisation over known foregrounds

- Need to invert covariance matrix (just once!)
- Infeasible (and pointless) on full-resolution maps
- We do it on reduced resolution maps (nside : $512 \rightarrow 16$).
- We do not take foreground-corrected maps, because we correct for them.

5 – Foregrounds

Three known foregrounds: Synchrotron, Free-Free, Dust

There are three options:

- Subtract them need confidence that your model is correct
- Marginalise over them :

$$C_{\rm fg} = \lambda {f t} {f t}^{\rm T},$$
 (2)

where $\lambda
ightarrow \infty$ and ${f t}$ is a template vector.xs

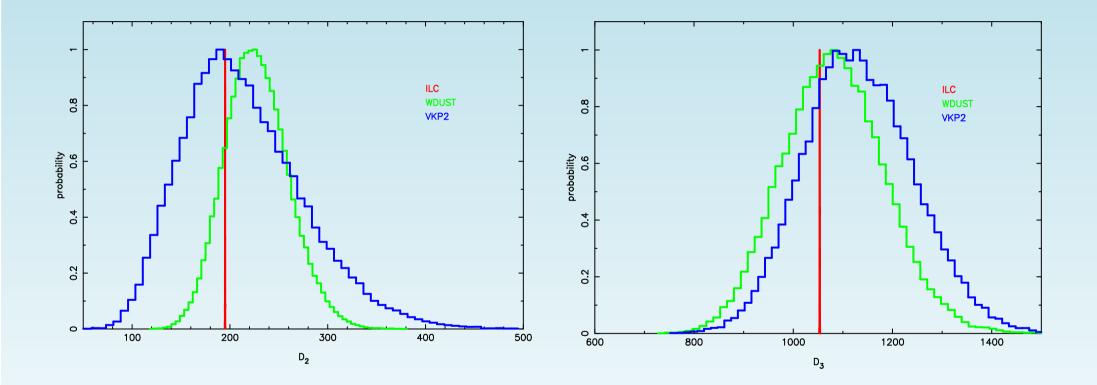
- $\bullet \; \operatorname{Set} \lambda = 1$
- We opted for two options:
 - Not-that-conservative: Take W channel, KP2 mask, subtract Free-Free, marginalise over dust — WDUST
 - Conservative: Take V channel, KP2 mask and marginalise over everything VKP2

Two methods to explore $p(a_{\ell m})$:

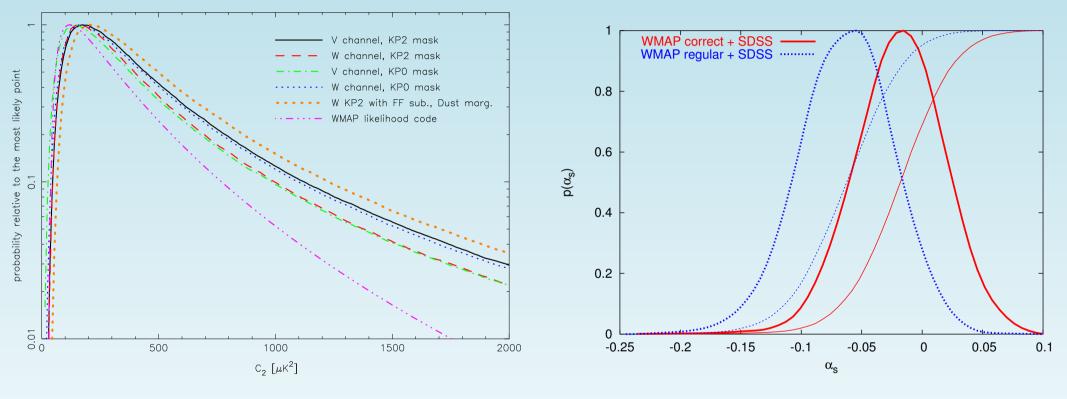
- Use MCMC algorithm (astro-ph/0404567)
- Realise that $p(a_{\ell m})$ must be a multivariate Gaussian:
 - Need only a certain number of evaluations of likelihoood to constrain parabolla \rightarrow dramatic increase in speed
 - Under some simplifying assumptions can do it directly from the data, but requires an inversion of $n \times n$ matrix.

Once we have distribution of $p(a_{\ell m})$ we can play many games:

- Calculate $D_{\ell} = \langle a_{\ell m} a^{\star}_{\ell m} \rangle$ to decouple cosmic variance from foreground / sky cuts effects
- Impose confidence limits on various statistics claiming alignment, etc.

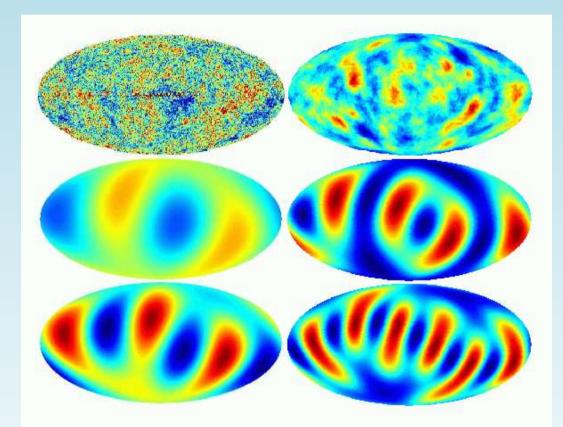


9 – Exact C_ℓ likelihood



(astro-ph/0403073)

10 – Quadrupole and Ocutpole Alignment



(Taken from do Oliveira-Costa et al)

- Visually aligned
- One would like to quantify this.

11 – de Oliveira-Costa vectors

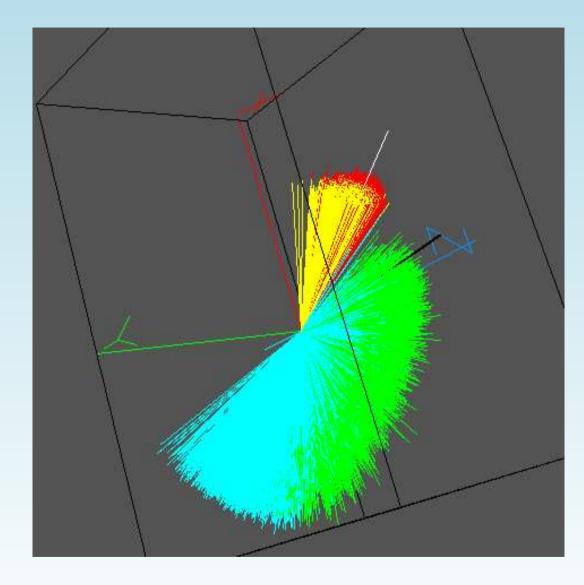
De Oliveira et all introduce an axis assigned to each multipole.

This axis maximises the angular momentum dispersion

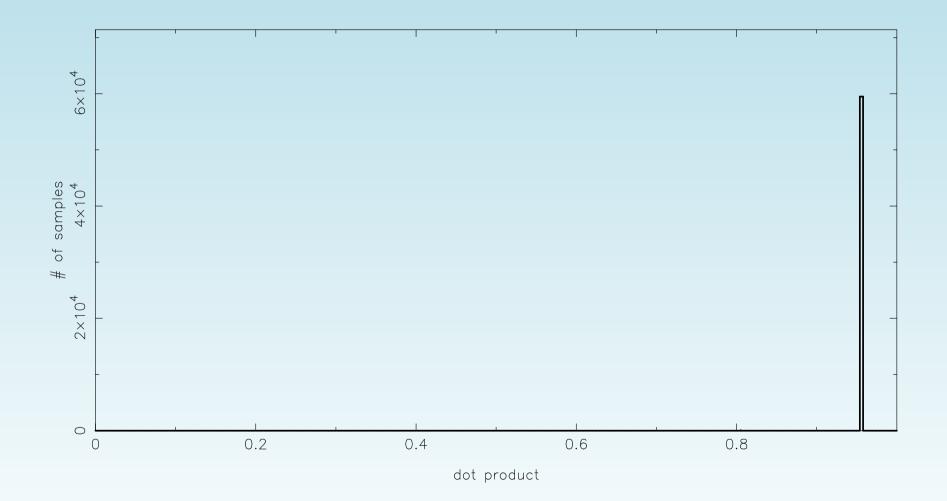
$$K = \sum_{m} a_{\ell m} a_{\ell m}^* m^2 \tag{3}$$

Using TOH version ILC map, the dot product for quadrupole and octopole 0.98.

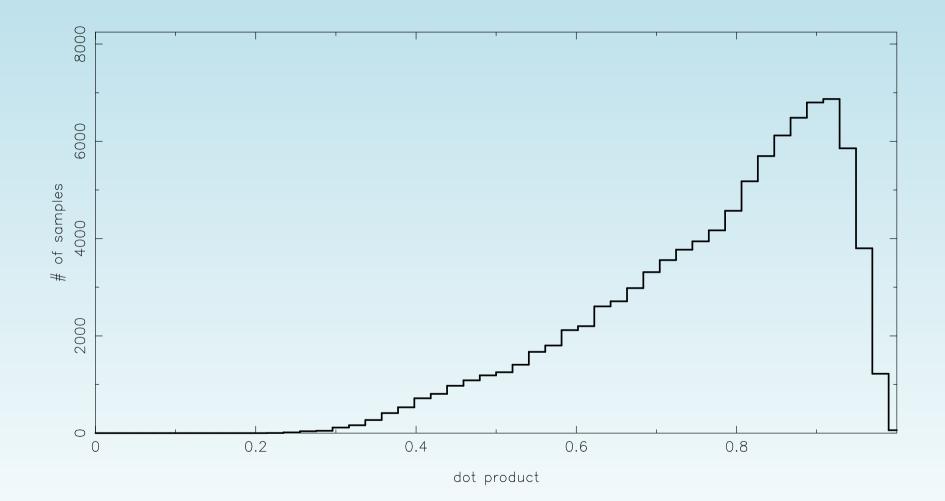
12 – 3D vectors



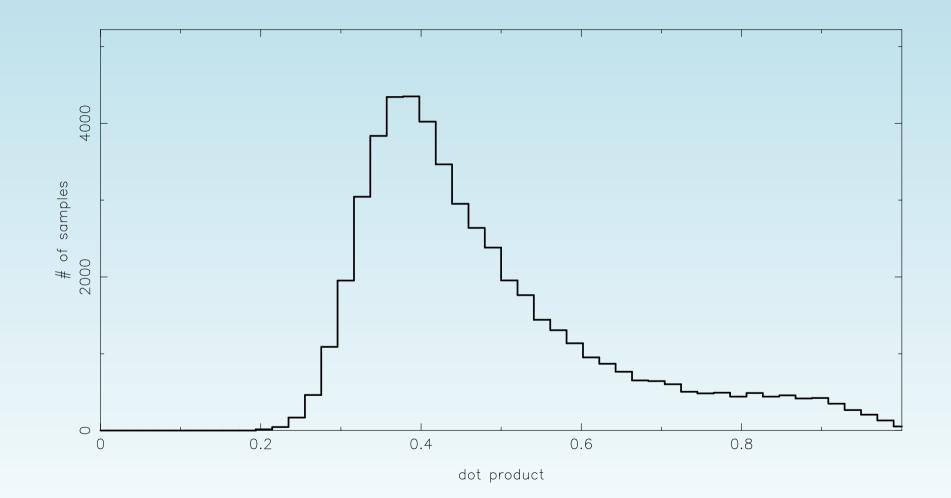
13 – Vector alignment: ILC



14 – Vector alignment: WDUST



15 – Vector alignment: VKP2



16 – Multipole vectors

An alternative ideas are the multipole vectors (Copi et al.)

It is based on the idea that every multipole of the order ℓ is fully determined by ℓ headless vectors $\hat{\mathbf{v}}^{\ell,i}$ such that

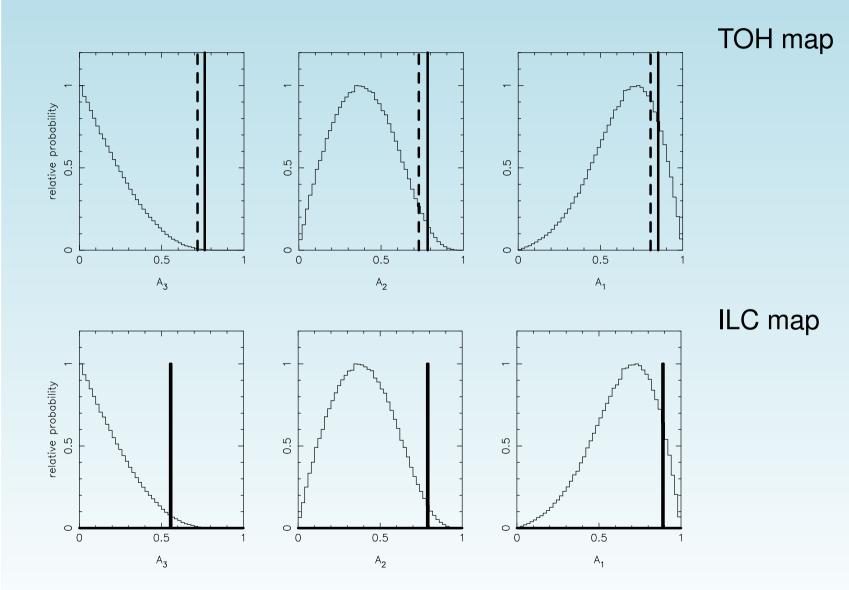
$$\sum_{m} Y_{\ell m} \left(\hat{e} \right) a_{\ell m} = A^{(\ell)} \prod_{i=1}^{\ell} \left(\mathbf{\hat{v}}^{\ell,i} \cdot \mathbf{\hat{e}} \right).$$
(4)

Pairs of these vectors can be used to form oriented areas:

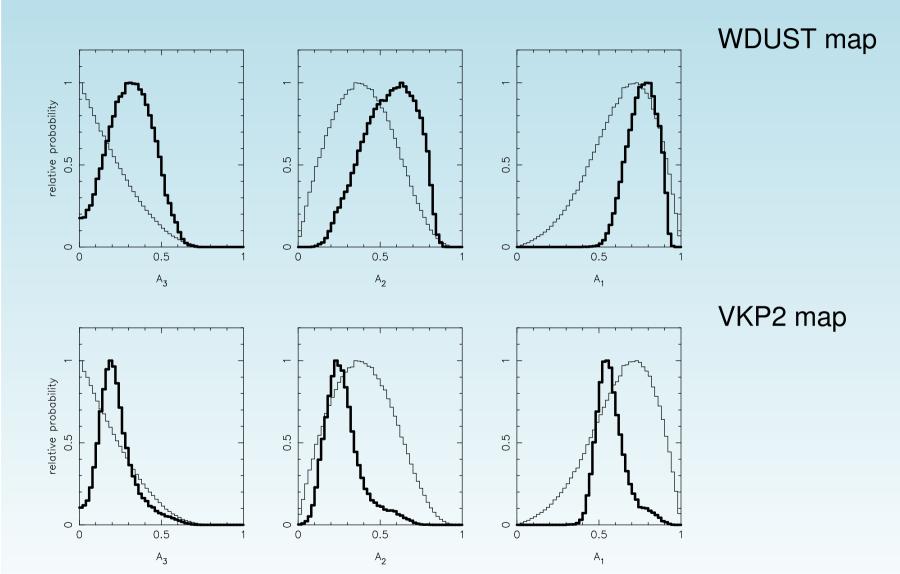
$$\mathbf{w}^{\ell,i,j} = \hat{\mathbf{v}}^{\ell,i} \times \hat{\mathbf{v}}^{\ell,j}.$$
(5)

- There is one such "area" vector for the quadrupole and three for the octopole.
- If one takes the dot-products between $\mathbf{w}^{2,1,2}$ (quadrupole) and $\mathbf{w}^{3,i,j}$ (three octopole vectors) and orders them in decreasing magnitude one obtains three numbers denoted A_1 , A_2 and A_3 .
- $A_{1,2,3}$ unusually high (Schwarz et al.)
- This procedure is highly a-posteriori.

18 – Multipole vectors



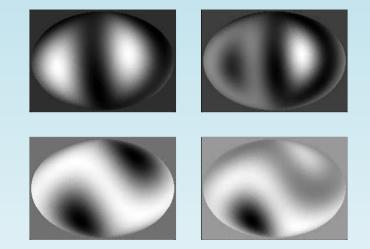
19 – Multipole vectors



Feature matching:

Multiply quadrupole and octopole:

$$T_{\times} = \hat{T}_{\ell=2} \times \hat{T}_{\ell=3}.$$
 (6)

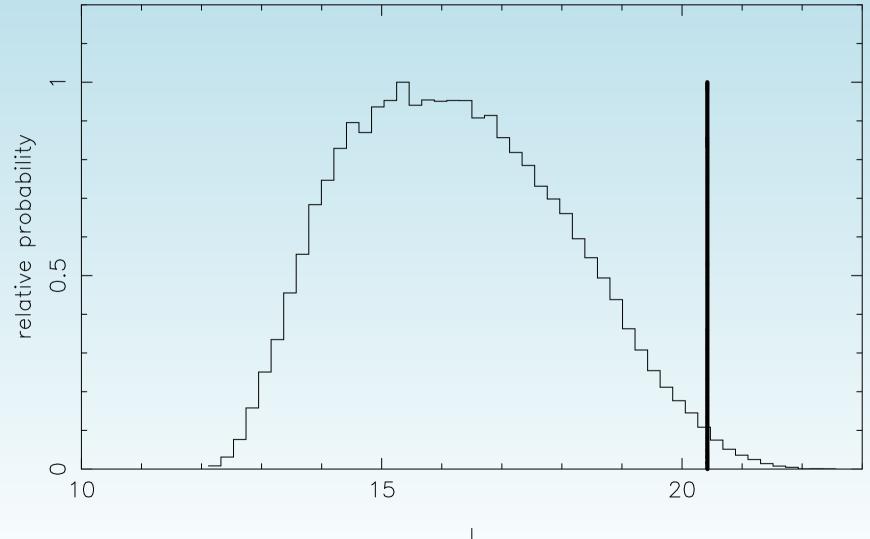


(7)

Form a quantity that peaks if features are matched:

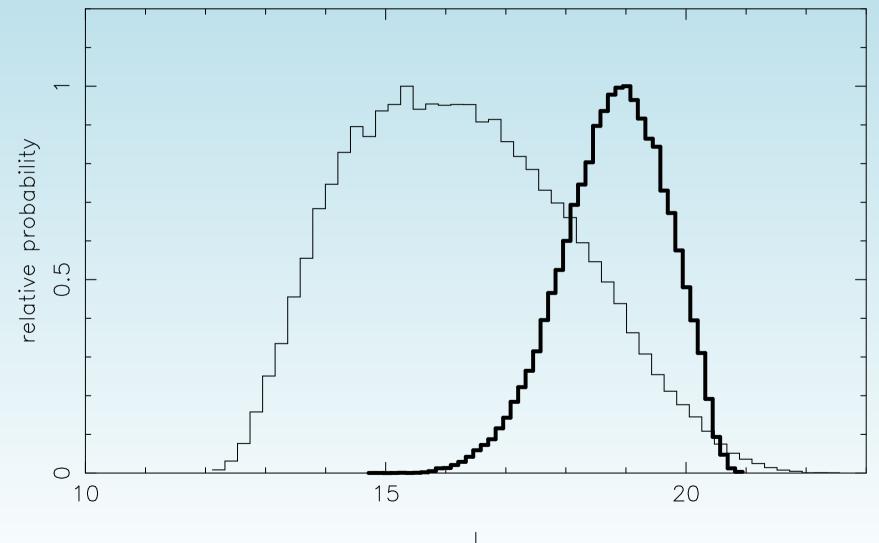
$$I = \int \left(T_{\times}^2 \right) \mathrm{d}A,$$

21 – Feature matching: ILC



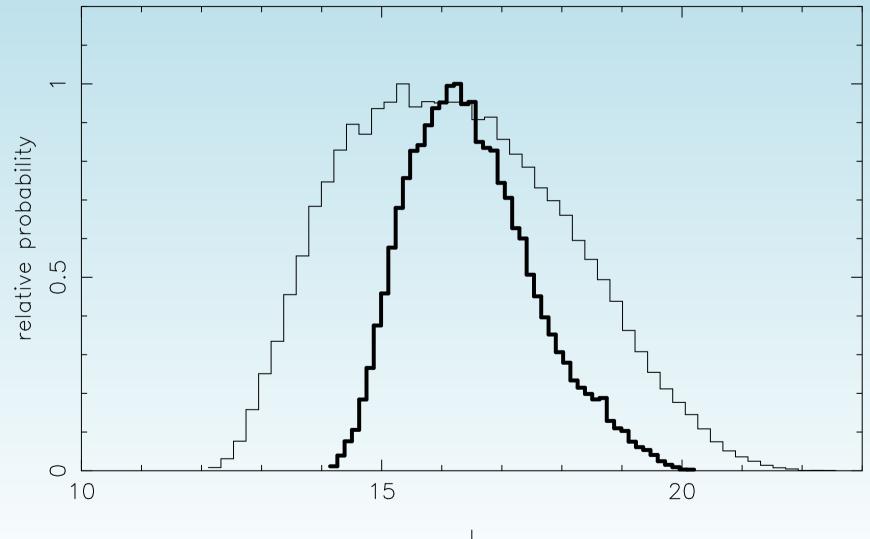
1

22 – Feature matching: WDUST



1

23 – Feature matching: VKP2



I

24 – Alignment with ecliptic

Finally, there were claims that quadrupole and octopole are aligned with ecliptic. Here we test these claims using multipole vectors $\mathbf{w}^{\ell,i,j}$ (Schwartz et al).

Again we form quantities:

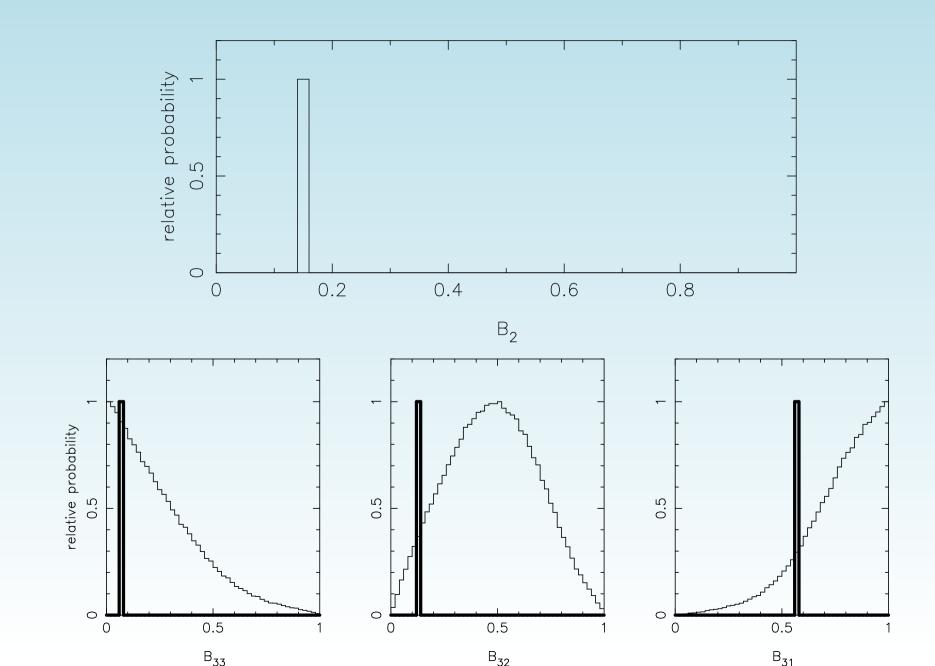
$$B_2 = \mathbf{w}^{2,0,1} \cdot \hat{n}_{\text{ecl}} \tag{8}$$

$$B_{31} = \mathbf{w}^{3,0,1} \cdot \hat{n}_{\text{ecl}} \tag{9}$$

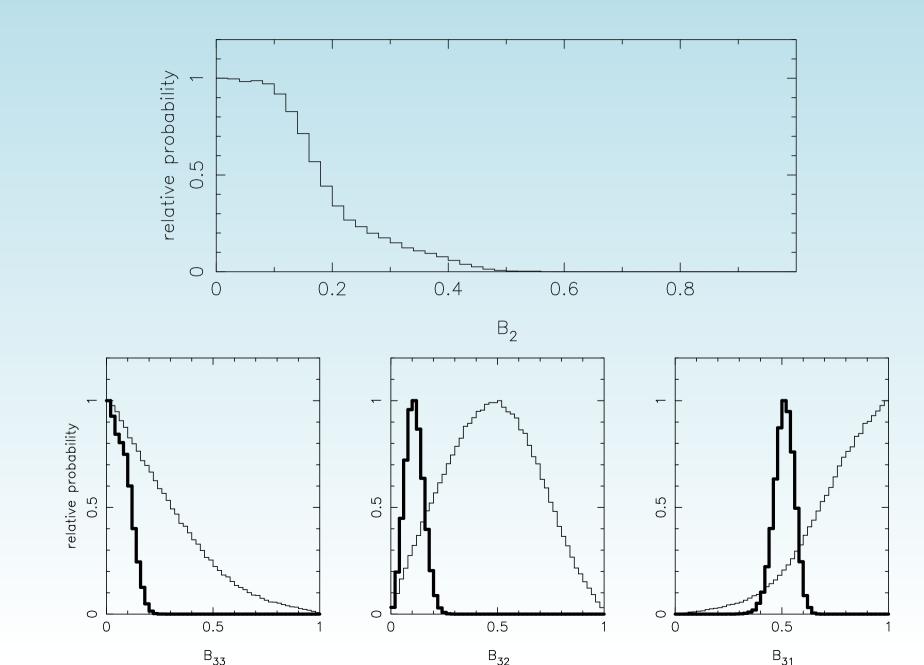
$$B_{32} = \mathbf{w}^{3,0,2} \cdot \hat{n}_{\rm ecl} \tag{10}$$

$$B_{33} = \mathbf{w}^{3,1,2} \cdot \hat{n}_{\text{ecl}} \tag{11}$$

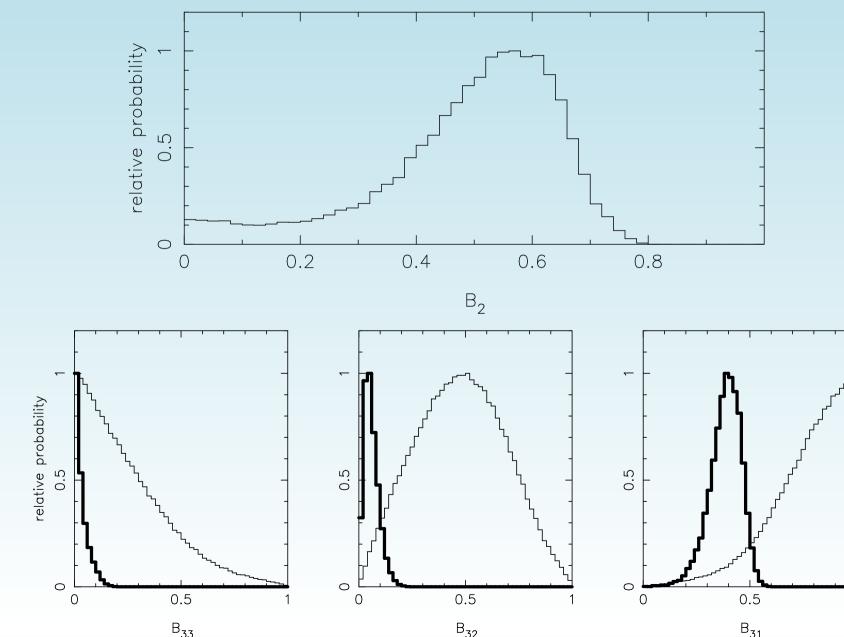
25 – Ecliptic alignment - ILC



26 – Ecliptic alignment - WDUST



27 – Ecliptic alignment - VKP2



28 – Is it statistically significant?

- Taking evidence ratio between models with $B_{32} = B_{33}(=B_2) = 0$ and isotropic favours the former at quite high confidence (1 in ~ 40).
- However, these models very a-posteriori
- Taking in account a number of models one can "invent", it drops to 1σ .
- Schwarz et al disagree.

- MCMC chains in a_{2m} and a_{3m} allow a novel study of low multipoles
- Using better computational techniques, one can go up to $\ell\sim 30.$
- Alignment between quadrupole and octopole seems to vanish, regardless of the statistic used.
- Alignment between quadrupole / octopole and ecliptic is to some extend subjective.