Ground-based CMB Where are we going?

Small-Scale CMB Temperature anisotropy

The Sunyaev-Zel'dovich Effect

CMB Polarization Anisotropy

Interferometers

o Very stable so long integrations possible

o Each field observed with many detectors, high angular resolution → deep, detailed images

o Simultaneous point source observations separable - long baselines used for point source removal, short baselines give cluster sensitivity

o Brightness sensitivity is limited

Will yield early survey results (100s of clusters), detailed cluster observations

Bolometer Array Instruments

Very sensitive \rightarrow short integrations required

Many detectors across the sky \rightarrow Fast, large scale mapping

Single filled aperture → high sensitivity to low surface brightness objects

Angular resolution is limited

Will yield surveys containing 1000s to tens of 1000s of clusters

Future SZE Survey/Small Scale CMB Anisotropy Instruments

SZA (Sunyaev-Zel'dovich Array) - first light this summer (N. Hemisphere, Owens Valley, CA)

- Chicago, Coumbia, OVRO, MSFC
- 8 element interferometric array of 3.5 m dishes (30, 90 GHz)
- 100s of clusters survey, detailed imaging, small scale anisotropy (1~1000-2000)

AMI (Arcminute Microkelvin Imager) – first light achieved (N. Hemisphere, Cambridge, England)

- MRAO/Cavendish/Cambridge group
- 10 element interferometric array of 3.7 m dishes (15 GHz)
- 100s of clusters survey, detailed imaging, small scale anisotropy (1~1000-2000)

AMIBA (Array for MIcrowave Background Anisotropy) (N. Hemisphere, Mauna Loa, Hawaii)

- ASIAA, Physics Dept of National Taiwan University, ATNF
- 19 element interferometric array of 1.2m and 0.31m dishes (95 GHz)
- SZE, missing baryons, polarization anisotropy

Bolocam (currently operating) (N. Hemisphere (Hilo, Hawaii)

- Caltech 150 element array for the CSO \leftarrow EXISTS
- UMASS Bolocam-2 array on the 50-m LMT in Mexico
- Blank-field cluster survey, other astrophysics

APEX (Atacama Pathfinder Experiment) 2006 (S. Hemisphere, Atacama Desert, Chile)

- U.C. Berkeley 300 element array on the Max Planck prototype ALMA 12 m telescope at Atacama
- 1000s of SZ clusters, small scale anisotropy

SPT (South Pole Telescope) 2007 (S. Hemisphere, South Pole)

- Large team PI J. Carlstrom at U. Chicago
- with 1000 element array being developed at U.C. Berkeley
- Optimized for detecting tens of thousands of clusters, also measure small-scale anisotropy

ACT (Atacama Cosmology Telescope) 2007 (S. Hemisphere (Atacama Desert, Chile)

- Large team PI L. Page, Princeton
- with 1000 element array being developed at NASA/Goddard
- Optimized to measure small-scale CMB anisotropy, also measure 1000s of clusters

What we plan to know...

The SZE/Small-Scale CMB

Thermal SZE

- > Cluster Abundance dN/dz \rightarrow Ω_{M} , Ω_{Λ} , w, w(t)?
- > Determine σ_8
- Tests of Non-Gaussianity
- Small-Scale CMB Angular Power Spectrum
- Spatial power spectrum, P(k)
- \succ Cluster gas mass fraction $\Rightarrow \Omega_{\rm b}$
- with X-ray observations
 - Angular Diameter distance/Hubble Constant
 - > Scaling Relations, $\Delta S_v T_x$, θT_x , $T_x \Delta S_v$
 - Scatter in scaling relations

Cluster Astrophysics

- >cluster evolution
- cooling cores, cold fronts, shock fronts, evacuated cavities
- > merger history, current dynamical state, relationship of intracluster gas to stellar population
- ➢Kinetic SZE/OV Effect
 - ➢ Reionization epoch
 - ≻Peculiar velocities at high z
- Small-Scale CMB Anisotropy

▷ n_s, dn/dln(k)

Cosmological Parameter Constraints

 \Box : systematic tilt in the mass function $\sigma(M)^{0.1}$

 \bigtriangleup : 10% reduction in mass function amplitude

x : +5% offset in limiting mass

Holder, Haiman & Mohr 2001, astro-ph/0105396

What we will certainly learn...

Better control of Instrumental Systematics (sidelobes, offsets, pickup, loading, etc etc etc.)

- Small-scale foregrounds at many frequencies at sub μK levels (dust, free-free, synchrotron, point sources, ?)
- Lots of things about galaxy clusters (can they be used as standard candles at all – self calibration, fitting functions, etc? Do we learn only astrophysics and no cosmology?)
- $\sigma_8,$ small-scale primary CMB anisotropy, small-scale secondary CMB anisotropy

Bolometric Receivers

Highest sensitivity CMB detectors above ~150 GHz

Required to understand dust foregrounds

Coherent Radiometers

Best detectors at frequencies lower than ~100 GHz

Required to understand Synchrotron, free-free, possible spinning dust

Muchovej (Columbia)

Future CMB Polarization Anisotropy Instruments (Ground-Based Only)

Currently operating or already have data in hand - CAPMAP (HEMT) - N. Hemisphere (New Jersey, USA) - Princeton, Chicago, Miami, JPL - DASI (HEMT - Interferometer) - S. Hemisphere (South Pole) - Chicago, Caltech, JPL - CBI (HEMT - Interferometer) - S. Hemisphere (Atacama Desert, Chile) - Caltech, Chicago, JPL Upcoming – tens of detectors - QUEST (bolometer) - S. Hemisphere (South Pole) - Stanford, Cardiff, Chicago, Caltech, JPL, IPAC - BICEP (bolometers) - S. Hemisphere (South Pole) - Caltech, JPL, Cardiff, San Diego - AMIBA (HEMTs) - ASIAA, Physics Department of National Taiwan University, ATNF Upcoming - hundreds to thousands of detectors - QUIET (HEMTs) - S. Hemisphere (Atacama Desert, Chile) - Caltech, Chicago, Columbia, JPL, Miami, Princeton, Berkeley, Harvard, GSFC - PolarBear (bolometers) - N. Hemisphere (White Mountain, CA) - Berkeley,? - clover (bolometers) S. Hemisphere (Dome C, Antarctica) - Cardiff, Cavendish Astrophysics Group Other Instruments about which I know little - BRAIN, MBI, SPTPOL, ACTPOL

CMB Polarization Anisotropy E-mode polarization B-mode polarization

- Generated only by scattering (most direct probe of physics at recombination)
- Probe epoch of reionization by first stars (WMAP result)
- Serves as a consistency check on interpretation of temperature anisotropy as signature of gravitational instability model
- Remove degeneracies in cosmological parameters inferred from primary anisotropies and enhance precision with which cosmological parameters are measured

- Generated by perturbations in the spacetime metric gravitational waves
- The amplitude of polarization from Inflation is proportional the square of the inflaton potential
- Detection of this signal may yield a measurement of the energy scale of inflation
- Yields clues to quantum gravity
- Separable from E-modes by "curl" signature

What we plan to know...

What we will certainly learn...

Better control of Instrumental Systematics (sidelobes, offsets, pickup, loading, instrumental polarization, E/B mixing, etc etc etc.)

polarized foregrounds at many frequencies at nK levels (dust, free-free, synchrotron, point sources, atmosphere, etc.)

