21cm Radiation from Reionization, the View from Simulations

Garrelt Mellema Stockholm Observatory

Collaborators: Ilian Iliev, Paul Shapiro, Ue-Li Pen, LOFAR EoR Key Project team (Ger de Bruyn, Saleem Zaroubi, Benedetta Ciardi, Geraint Harker, et al.), and many others.

Contents

- The 21cm signal
- Simulation methodology
- Image cubes
- Statistical measurements
- Conclusions

Neutral atomic Hydrogen creates 21 cm radiation

Redshifted 21cm Emission

- Observing the 21cm spin-flip transition of HI directly will probably provide the best probe of the when and how of reionization.
- In addition we may get data on the density power spectrum of the intergalactic medium (IGM).
- Attempts underway with GMRT, 21CMA, LOFAR, MWA.

Mellema et al. (2006)

LOFAR HBA Antennas

July 7, 2008

3

The Redshifted 21cm Signal

 The measured radio signal is the differential brightness temperature δT_b=T_b-T_{CMB}:

 $\delta T(z) \approx 27 \mathbf{x}_{HI} (1 + \delta) (1 - T_{CMB} / T_s) [(1 + z) / 10]^{1/2} \text{ mK}$

(for WMAP3 cosmological parameters).

- Depends on:
 - x_{HI} : neutral fraction
 - $-\delta$: overdensity
 - T_s: spin temperature
- For T_s»T_{CMB}, the dependence on T_s drops out
- The signal is *line* emission: carries spatial, temporal, and velocity information.

The image cube: images stacked in frequency space

time

θ

A

Simulation Methodology

We rely on the paradigm of hierarchical structure formation in ACDM cosmology (using cosmological parameters, e.g. WMAP).

Three steps:

- Evolution of IGM density (δ) & (proto-)galaxies from a cosmological simulation.
- Assign EUV luminosity to (proto-)galaxies.
- Transfer EUV radiation through the IGM (x_{HI}) .
- For large scale simulations galaxy formation is unresolved and baryons and dark matter have the same distribution:
 - Cosmological N-body simulation (for DM).
 - Transfer of EUV radiation can be done in postprocessing mode.

Cosmological Simulations

We need

- Large scale simulations.
 - Observationally needed (~degree fields of view).
 - Theoretically needed (cosmic variance, HII regions >>10 Mpc).
- Large dynamic range simulations.
 - Dominant structures were *small* dwarf proto-galaxies.
 - Preferably resolve collapsed structures (`halos') of 10⁸ M_o and up.
- This implies `Millenium-size ´simulations (>10 billion particles).
- For example: 114/h Mpc box resolving $M_{halo} > 10^8 M_{\odot}$: 2/3 of halos have $M_{halo} < 10^9 M_{\odot}$ at z~9.

DM Halos as EUV Sources

- We have concentrated on stellar populations as sources of EUV radiation.
- Parameters:
 - Initial Mass Function
 - Star formation rate
 - EUV escape efficiency (10-20%)

ESO338-IG04

- Options:
 - Simple parametrization (L \propto M_{DM}, #photons per baryon).
 - Galaxy evolution models (DM + hydro, semi-analytical models): GADGET, GALFORM.
- If (lower mass) sources are missing: boost the luminosity of available sources (but this does influence the results!).

Simulation Characteristics

- I will concentrate on 21cm results from a range of our simulations.
- Three generations of simulations:
 - WMAP1 (100/h Mpc)
 - WMAP3 (100/h Mpc, 35/h Mpc)
 - WMAP3+ (114/h Mpc, 64/h Mpc)
- WMAP3 simulations have constant particle *number* (35/h Mpc: $M_{min} = 10^8 M_{\odot}$, 100/h Mpc: $M_{min} = 2 \ 10^9 M_{\odot}$).
- New WMAP3+ simulations have constant particle mass $(M_{particle}=5\ 10^7\ M_{\odot}, so\ M_{min}=10^8\ M_{\odot})$.

Simulation Characteristics (2)

- We distinguish between low and high mass sources, the boundary lies at M= 10⁹ M_a.
 - Low and high mass sources can have different photon producing efficiencies.
 - Low mass sources can be suppressed in ionized regions (feedback of reionization on galaxy formation), `Jeans mass filtering'.
- A redshift dependent (global) clumping factor can be used. This increases the recombination rates, and leads to later reionization.

Notation

Our simulations are characterized by

Clumping

Low mass sources suppression

64Mpc_f100C_f250S_432

Boxsize = 64/h Mpc

High mass sources efficiency

Low mass sources efficiency

 $\begin{array}{l} \mathsf{RT grid} = \\ 432^3 \end{array}$

21cm LOS Reionization History

- Reionization histories along the line of sight.
- Frequency/redshift direction contains evolutionary, geometrical and velocity information.
- Simulation: $64Mpc_f100_f250S_432$ $(64/h Mpc, M_{halo} > 10^8$ M_{\odot}), with feedback on low mass sources.

Flying through Time and Space

- Reionization has a complex geometry of growing and overlapping bubbles.
- Here illustrated with the redshifted 21cm signal:
 - High density neutral regions are red
 - Ionized regions are black.
- Movie generated by using the periodicity of the volume, but rotating it to avoid passing through the same structures.

Statistical Measurements

- The sensitivity of the upcoming EoR experiments will be too low to image 21cm from reionization pixel by pixel: Statistical measurements needed.
 - First goal: to reliably detect signatures from reionization (and separate them from foreground and instrumental effects).
 - Second goal: to interpret them in terms of astrophysics (source population and properties).
- Luckily, the 21cm line signal is rich in properties:
 - 1. Global signals: mean signal, fluctuations.
 - 2. Angular properties: power spectra
 - 3. Frequency properties: correlation length, Kaiser effect
 - 4. Non-Gaussianity.

Global Signals

- A single dish telescope could measure the change of the global signal with frequency: simulations do not show a sharp transition.
- The corresponding measurement by an interferometer would be the change of the 21cm (rms) fluctuations.
- Simulations: 64Mpc_f100_f250S_432 and 64Mpc_f100_f250S_216

Evolution of Fluctuations

- When plotted against the mean mass-weighted ionization fraction x_m(HII), for late times the evolution of fluctuations shows roughly similar behaviour for different (simulation) resolution and source parameters, but the amplitude differs.
- Peak around x_m(HII)~0.6-0.7 (shifts to lower values for higher angular resolution).

Power Spectra

- Information about the length scales can be obtained from the power spectra.
- Simulations show clear trends of shifting power to larger scales as reionization progresses, and a flattening of the power spectra.
- Note that the angular power spectrum is measured directly by an interferometer, the multipole I is equivalent to $\sqrt{(u^2+v^2)}$ in a visibility map.

Velocity Distortions

- Due to the peculiar velocity field, the signal can be displaced from its cosmological redshift.
- Kaiser effect or velocity compression : due to infall, signal concentrates at the high density peaks.
- This is clearly seen in the simulations and gives ~30% increase in fluctuations (and up to a factor of 2).
- This shows that fluctuations calculated from density and ionization fractions alone miss some power → better to use image cubes.

Effect of the Velocity Field

- Adding the velocity distortions visibly increases the fluctuations in the neutral medium.
- Maximum value also larger.
- The effect remains noticeable even at LOFAR-like resolution (3', 200 kHz).
- Simulation: 100Mpc_f250C_f0_203.

And in Fourier Space...

- Since the velocity gradients responsible for the distortions are related to the density field, one can write P(k) in terms of a polynomial in μ=cos(θ_k), the angle between the LOS and the k vectors (see Barkana & Loeb 2005).
- This results in warped contours in Fourier space when looking along the zaxis.
- Should allow direct characterization of density power spectrum.

k_x,k_z, with velocity

Correlation Length

- Reionization changes the correlation length along the frequency axis in a characteristic way: formation of large HII regions increases correlation length from ~200 kHz to ~1 MHz.
- Still substantially shorter than for the continuum foregrounds, so it could be used as a test for proper foreground subtraction.

Simulation 100Mpc_f250C_f0_203

Non-Gaussianity

- Probability distribution functions of the 21cm signal are clearly non-Gaussian.
- Limited resolution reduces the effect somewhat, but still noticeable.
- Towards the end of reionization the effect is largest.

-3', 200 kHz

intrinsic

Simulation 100Mpc_f250C_f0_203

Skewness

- Non-Gaussianity suggests that measuring the skewness could be an interesting diagnostic.
- The simulations show a clear evolution of skewness with increasing ionization, with some differences between different simulations.
- Finite resolution modifies skewness, but does not remove it.
- Skewness may offer an good way to detect the signal, if remnants of foreground subtractions and other effects are dominantly Gaussian (cf. Harker et al. 2008).

Conclusions

- Numerically modelling reionization is challenging, requiring large dynamic range simulations.
- The 21cm signal has a rich set of properties which should help in recognizing it in the data of upcoming EoR experiments.
- The later stages of the EoR are characterized by increases in the
 - rms fluctuations
 - skewness
 - correlation length in frequency direction
- Power spectra also show a characteristic evolution to flatter structures, as well as warped contours in the redshift/frequency direction due to velocity compression.