The Inhomogeneous Background of H₂ Dissociating Radiation During Cosmic Reionization

w/ P. R. Shapiro (Texas) I. T. Iliev (Zurich) G. Mellema (Stockholm) U.-L. Pen (CITA)

Kyungjin Ahn Chosun University 24th IAP Colloquium "Far Away: Light in the Young Universe at Redsfhits Beyond Three" Jul 2008, IAP, Paris

<u>Simulation of Cosmic Reionization</u> – 1. N-body simulation

- Iliev et al. (2005 – 2007)
- Other groups: Harvard, Princeton, Paris,

. . .

- Perform a pure N-body simulation in a big box (> ~ 50 Mpc)
- Create a density field
- Paint hydrogen(HI) with cosmic

abundace water and the formation in ACDM, at z = 10, from our *N*-body simulation: projection of the cloud-in-cell densities on the fine simulation grid (3248 × 3248 pixel) in a 20 comoving Mpc slice ($\sim 6 \times 10^8$ particles in the slice) of the ($100 h^{-1}$)³ Mpc³ simulation volume. (See http://www.cita.utoronto.ca/~iliev/research.html for the full-resolution images and some movies of our simulations.)

<u>Simulation of Cosmic Reionization</u> – 2. Halo Identification

- Identify halos
- halo mass → stellar mass → ionizing photon luminosity ("parametrizing our ignorance")

Figure 1. Early structure formation in Λ CDM, at z = 10, from our *N*-body simulation: projection of the cloud-in-cell densities on the fine simulation grid (3248 × 3248 pixel) in a 20 comoving Mpc slice ($\sim 6 \times 10^8$ particles in the slice) of the $(100 h^{-1})^3$ Mpc³ simulation volume. (See http://www.cita.utoronto.ca/~iliev/research.html for the full-resolution images and some movies of our simulations.)

Simulation of Cosmic Reionization – 3. Ray tracing

- Draw rays
- Along each ray, perform radiative transfer calculation

Figure 1. Early structure formation in Λ CDM, at z = 10, from our *N*-body simulation: projection of the cloud-in-cell densities on the fine simulation grid (3248 × 3248 pixel) in a 20 comoving Mpc slice ($\sim 6 \times 10^8$ particles in the slice) of the $(100 h^{-1})^3$ Mpc³ simulation volume. (See http://www.cita.utoronto.ca/~iliev/research.html for the full-resolution images and some movies of our simulations.)

Simulation of Cosmic Reionization – 4. Evolve in time

- Get ionized fraction at each cell, solving rate equations for ~ 20 million year
- Update source population
- Iterate

Figure 10. Volume rendering of the H II regions at redshifts z = 14.74 (left-hand panel) and z = 13.62 (right-hand panel). The 50 per cent ionization iso-surfaces are shown in dark colour, while the light colour volume renders the ionized gas density. (Images produced using the IFRIT visualization package of N. Gnedin)

Motivation

- Persistent UV background exists before ionizing radiation arrives
 - LW horizon (~ 100 Mpc comoving) is much larger than Stromgren radii
 - mostly negative feedback
- One needs to calculate UV background, especially in the H₂ Lyman-Werner (LW) band (dissociating H₂), and fluctuating
 - Usually done with parameterized J₂₁
 - Self-consistent calculations are from uniformly distributed sources (Haiman, Abel, Rees 2000), or averaged over a small box, which is even worse since it is too small to account for source-clustering (Ricotti, Gnedin, Shull 2001; Yoshida, Abel, Hernquist, Sugiyama 2003)
- LW band photons contributed by stars in minihalos (T_{vir}<~10⁴K) AND stars in atomic cooling halos (T_{vir}>~10⁴K), which are responsible for reionizing the Universe
- At least, atomic cooling halos are highly clustered (e.g. Iliev et al. 2006, 2007) with mean separation of clusters about a few - ~10 comoving Mpc

Attenuation of LW band photons by HI Lyman Series

- LW band photons attenuated by HI Lyman resonance lines
- Assume infinite opacity for every HI Lyman resonance line
- Sawtooth-modulation (Haiman, Abel, Rees 2000)
 - Based upon uniformly distributed sources: no fluctuation
 - Different horizon for different Lyman resonance lines

Picket-Fence Modulation

- Sources distributed inhomogeneously: Need to sum individual contribution
- One single source is observed as a picket-fence in spectrum
- Obtain "picket-fence modulation" factor
 - Relative flux averaged over E=[11.5 13.6] eV
 - Can effectively follow attenuation by multi-frequency phenomenon by pre-calculated modulation factor -> Huge alleviation computationally.

Picket-Fence Modulation

• Optically thin (ot) limit: Geometrical dilution only

$$F_{\nu, \text{ot}}(\nu_{\text{obs}}) = \frac{L_{\nu} \left(\frac{[1+z_{\text{s}}]}{[1+z_{\text{obs}}]} \nu_{\text{obs}}\right)}{4\pi \left(\frac{r_{\text{os}}}{1+z_{\text{obs}}}\right)^2} \cdot \left(\frac{1+z_{\text{obs}}}{1+z_{\text{s}}}\right)$$

Real situation: Geometrical dilution + Attenuation by H Lyman series

$$\langle F_{\nu} \rangle = \frac{\langle L_{\nu} \rangle}{4\pi \left(\frac{r_{\rm os}}{1+z_{\rm obs}}\right)^2} \cdot \left(\frac{1+z_{\rm obs}}{1+z_{\rm s}}\right) \cdot f_{\rm mod}$$

Procedure

- Use the N-body halo catalogue in 50 Mpc box
- Mimic larger volume by attaching the same box periodically (caveat)
- Sum fluxes from individual sources, multiplying by picket-fence modulation factor
- When finding sources, follow the past light cone
- Use "Self-Regulated Reionization" simulation (Iliev et al. 2007): Sources categorized by (1) Jeans-mass filtering, and (2) atomiccooling.
 - Large-mass halos (M >~ $10^9 M_{\odot}$): Stars form even if photoionized. Stars do NOT only under J₂₁>>1. Possibly Pop II.
 - Intermediate-mass halos (10⁸ ~<M/ M_{\odot} <~ 10⁹): Stars do NOT form if photoionized or under J₂₁>~1. Possibly Pop III.
 - Mini-halos (M <~ 10⁸ M_{\odot}): Stars do NOT form even if photoionized or under J₂₁ >(J₂₁)_{threshold} ~10⁻²-10⁻¹ \leftarrow NOT resolved yet...

Procedure

- Use the N-body halo catalogue in 50 Mpc box
- Mimic larger volume by attaching the same box periodically (caveat)
- Sum fluxes from individual sources, multiplying by picket-fence modulation factor
- When finding sources, follow the past light cone
- Use "Self-Regulated Reionization" simulation (Iliev et al. 2007): Sources categorized by (1) Jeans-mass filtering, and (2) atomiccooling.
 - Large-mass halos (M >~ $10^9 M_{\odot}$): Stars form even if Filtered photoionized. Stars do NOT only under J₂₁>>1 Possibly Populi.
 - Intermediate-mass halos ($10^8 \sim M/M_{\odot} < 10^9$): Stars do NOT form if photoionized or under J₂₁>~1. Possibly Pop III._ (or Cr M
 - Mini-halos (M <~ 10⁸ M_☉): Stars do NOT form even if photoionized or under J₂₁ >(J₂₁)_{threshold} ~10⁻²-10⁻¹ ← NOT resolved yet...

Retarded time emissivity

- Sources form in hierarchy.
- Horizon for LW background is large (~100 comoving Mpc)
- Construct spacetime diagram and draw past line cone at a given space-time to account for LW

comoving distance (Mpc)

Emission Coefficient of Pop II and Pop III sources

Dissociating background: Global evolution

- (J₂₁)_{threshold} reached long before reionization finished
- Minihalo sources do not contribute significantly to reionization

- Huge fluctuation exists
- Inside-out evolution of J₂₁

- Huge fluctuation exists
- Inside-out evolution of J₂₁

- Huge fluctuation exists
- Inside-out evolution of J₂₁

- Huge fluctuation exists
- Fluctuation decreases in time

Fig. 11.— (*left*) Probability distribution of $J_{\text{LW}, 21}$ inside a box of comoving size $35 h^{-1}$ Mpc at different redshifts. Numbers on individual curves represent corresponding redshifts. (*right*) The top panel shows deviation of $J_{\text{LW}, 21}$ from the average $\langle J_{\text{LW}, 21} \rangle$, expressed in terms of $1 + \delta_J$. Around $\langle J_{\text{LW}, 21} \rangle$ (solid), 68.27% (dotted), 95.45% (short dashed), and 99.73% (long dashed) of $J_{\text{LW}, 21}$ populations are shown. Variance of $J_{\text{LW}, 21}, \sigma_J^2$, is plotted in the bottom panel.

Where to look at for most pristine Pop III star forming regions?

- Inhomogeneous Radiative Feedback!!
 - Highly clustered ionizing sources
- Degeneracy broken for different source properties
 - escape fraction of ionizing radiation
 - dissociating/ionizing photon # ratio
- Contribution to NIR background fluctuation by Pop III objects -> Need to understand inhomogeneous feedback.

Conclusion

- Picket-fence modulation of LW background photons
 - Ease of LW background calculaiton
- Fluctuation in LW background comes from source clustering, at a scale of ~10 comoving Mpc
- Inhomogeneous feedback + Inhomogeneous structure formation = Inhomogeneous Pop III source formation
- Minihalo sources, globally, are suppressed long before reionization is complete
- Slight chance that reionization history be affected, if molecules are dissociated under very strong UV even inside atomic cooling halos: only near the end of reionization.
- Stay tuned
 - Radiative feedback coupled, bigger box, cosmic reionization simulation !!
 - Cosmic reionization simulation with minihalo prescription: Statistics of Pop III objects
 - Observables from the epoch of reionization