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The 3« reaction
T ~ 150-250 MK e ‘He
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Constraints by Pop Ill models The 3« reaction
Looking for extreme values Variations of some fundamental constants

What if fundamental constants are not constant ?

Variations are allowed by many

cosmological models:
Kaluza(1921), Klein (1926)

Jordan (1949), Brans & Dicke (1961)
string-based theories

quintessence theories, ...
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m, By, Q"p and T, variations

Variations are allowed by many

cosmological models:
Kaluza(1921), Klein (1926)

Jordan (1949), Brans & Dicke (1961)
string-based theories .22
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Are they observed ?
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Introduction =g production
Constraints by Pop Ill models The 3« reaction
Looking for extreme values Variations of some fundamental constants

What if fundamental constants are not constant ?

Are they observed ?

YES | NO !

Quast & al. (2004)
Srianand & al. (2004)
Kanekar & al. (2005)

Chand & al. (2006)

Webb & al. (2001)
Murphy & al. (2003, 2008)

Levshakov & al. (2007)
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Looking for extreme values Variations of some fundamental constants

What if fundamental constants are not constant ?

Are they observed ?

YES ! ¢ vﬁfJ"l NO !
4 Quast & al. (2004)

Webb & al. (2001) — Srianand & al. (2004)
Murphy & al. (2003, 2008) {_4/ Kanekar & al. (2005)
)

Levshakov & al. (2007) Chand & al. (2006)
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Introduction Massive stars need some '2C
Constraints by Pop Il models Stellar models
L ) for extrem lues Evolution with varying ABp /Bp

Massive stars rely on the CNO cycle

3o is a crucial reactionat Z =10
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Constraints by Pop Il models Stellar models
Looking for extreme values Evolution with varying ABp /Bp

Physical ingredients

Geneva code (but no rotation !)

15 M, models

X =0.75325, Y = 0.24675,and Z =0
no mass loss

NACRE reaction rates
except for 2C(a, )80 (kunz & al. 2002)

computations stopped at the end of core He-burning
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Introduction Massive stars need some '2C
Constraints by Pop 1] models Stellar models
Looking en S Evolution with varying ABp /Bp

15 M., evolution
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15 M., evolution
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weak 3a case (ABp/Bp = —0.005)
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15 M., evolution
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log Teff (yr) log p, (cm™3)

weak 3a case (ABp/Bp < 0)
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15 M., evolution

48 47 _ 46 45 14 16 18 2 22 24 28
log Teff (yr) log p, (cm™3)

strong 3« case (ABp/Bp = +0.005)

Olive & Meynet 2g production in massive Pop IlI



Introduction Massive stars need some '2C
Constraints by Pop llI models Stellar models
Looking for extren S Evolution with varying ABp /Bp

15 M., evolution

48 47 _ 46 45 14 16 18 2 22 24 28
log Teff (yr) log p, (cm™3)

strong 3« case (ABp/Bp > 0)

Olive & Meynet 2g production in massive Pop IlI



Introduction MS constraints
y ints by Pop Il models CHeB constraints
Looking for extreme values Results

Main sequence constraints

Only one model could not be 04 =3 7

computed at all:
ABD/BD = +0.030

Otherwise: high ABp/Bp
— long lifetime (max 22%)
— large convective core

No clear exclusion criterion 0 5x 108 107
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Introduction MS constraints
raints by Pop Il mo CHeB constraints
g for extreme val Results

Competition with other reactions

=]

During core He-burning:
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Intr MS constraints
3in Pop Il mo CHeB constraints
Looking for extreme values Results

Core He-burning constraints
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Intr MS constraints
3in Pop Il mo CHeB constraints
Looking for extreme values Results

Core He-burning constraints
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Intr MS constraints
3in Pop Il mo CHeB constraints
Looking for extreme values Results

Core He-burning constraints
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Looking for extreme values

Core He-burning constraints

0.8

XC12

1.2>I<10’
t (yr)

L
1.4x107

zan, Olive & Meynet

MS constraints
CHeB constraints
Results
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MS constraints
CHeB constraints
Looking for extreme values Results

Core He-burning constraints
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Introduction MS constraints
Constraints by Pop Il models CHeB constraints
Looking for extreme values Results

Results

End of core He-burning
15 M, models
ABp/Bp < -0.020:

— no 2C, no 60 left
— core of Mg

ABD/BD > +0.010:

— no "0 produced
— core of '2C
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Introduction MS constraints
Constraints by Pop Il models CHeB constraints
Looking for extreme values Results

Results

End of core He-burning

15 M, models
Same trend with 60 M., models

ABp/Bp < -0.020:

lower limit:
— no 2C, no 60 left
— core of ?*Mg ABp/Bp < -0.015
ABp/Bp > +0.010: upper limit:
— no "0 produced ABp/Bp > +0.015

— core of 12C
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Introduction MS constraints
Constraints by Pop Il models CHeB constraints
Looking for extreme values Results

Results

End of core He-burning

15 M, models
Same trend with 60 M., models

ABp/Bp < -0.020:

lower limit:
— no 2C, no 60 left
— core of ?*Mg ABp/Bp < -0.015
ABp/Bp > +0.010: upper limit:
— no "0 produced ABp/Bp > +0.015

— core of 12C

—0.015 < ABp/Bp < +0.010 —  |Aa/a| <afew107°
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Discussion

Stellar models can put constraints on the variations of the fine
structure constant at a redshift z ~ 15

Some points need yet to be clarified:

@ Reaction rates
3a most sensitive (resonant reaction)
other rates: marginally affected only

@ Nucleosynthesis
follow the advanced stages
inconceivable not to produce '>C or '®O (CO-rich UMPs)
timescale of variation: how many generations affected?
Pop IlII: no direct observations
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