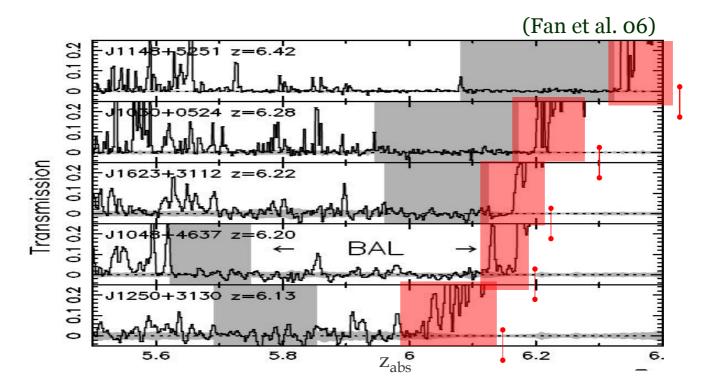

Windows on the Opaque Intergalactic Medium in the Spectra of high-z Quasars

Antonella Maselli

In collaboration with: Andrea Ferrara Simona Gallerani

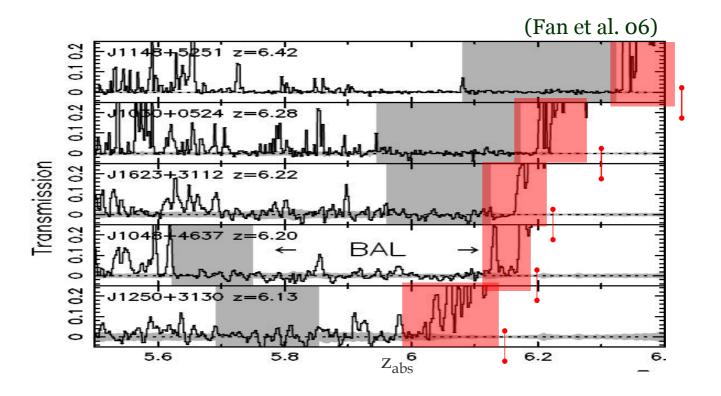
Paris, 11 July, 2008


XXIVth IAP Conference "Far Away: Light in the young Universe"

Windows of Transmission in the Opaque Universe

High-z QSO Spectra show:

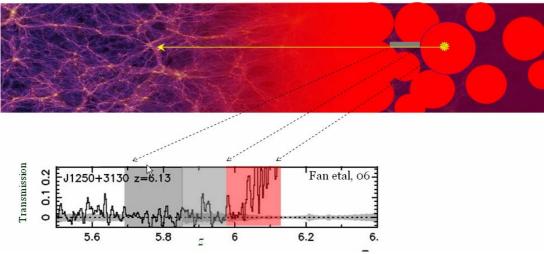
the onset of the GP through @ z > 5.7


No Transmitted Flux @ z> 5.7, i.e. Gunn Peterson Trough $\implies \begin{cases} \tau_{IGM} > 2.5 \\ x_{HI} > 10^{-3.8} \end{cases}$ Transmitted Flux approaching the quasar redshift $\implies \begin{cases} \tau_{IGM} < 2.5 \\ x_{HI} < 10^{-3.8} \end{cases}$

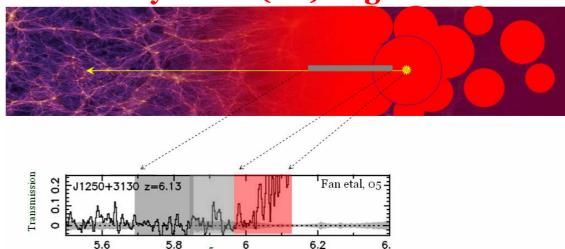
Windows of Transmission in the Opaque Universe

High-z QSO Spectra show:

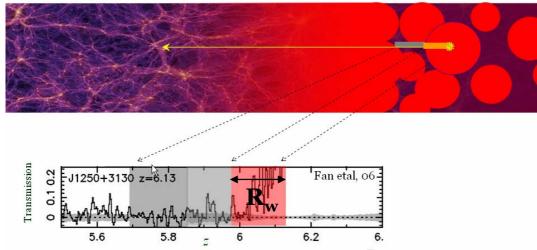
• the onset of the GP though @ z > 5.7



These spectral features offer the unique possibility to look through stretches of the IGM in the Opaque Universe and can provides important insights on the physical state of the IGM at z>6


Two Physical Regimes with Similar Emerging Spectra

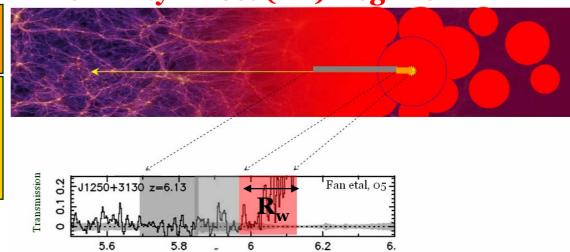
H_{II} Region (HR) Regime


Observed spectra have Different Implications for each of the two Regimes

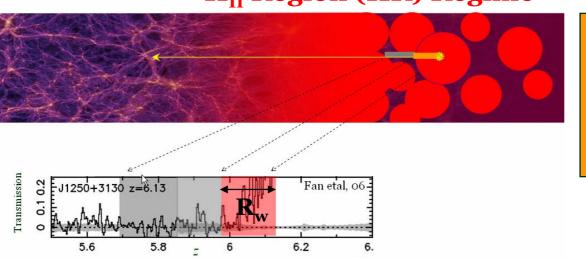
Proximity Effect (PE) Regime

Two Physical Regimes with Similar Emerging Spectra

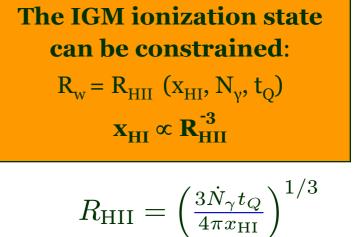
H_{II} Region (HR) Regime


The window of transmitted flux is the spectral counterpart of the quasar H_{II} region

Its extent is set by H_{II} region radius $R_w = R_{HII} (x_{HI}, N_{\gamma}, t_Q)$

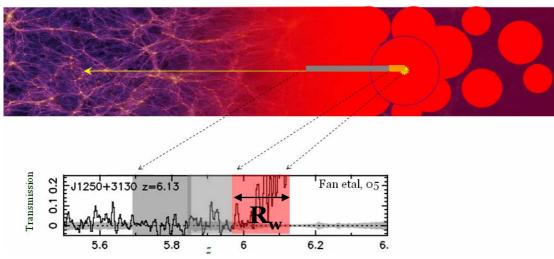

The window of transmitted flux is a signature of the quasar PE

Its extent is set by the onset of the GP through within the H_{II} region $R_w < R_{HII}$ "Apparent Shrinking"


Proximity Effect (PE) Regime

The HR Regimes Constraints on Reionization

H_{II} Region (HR) Regime

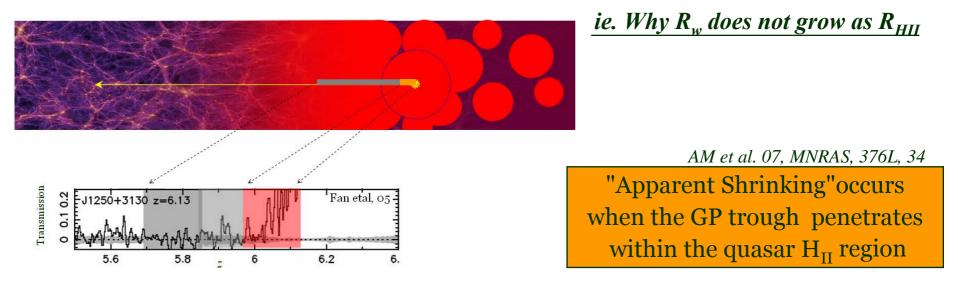


Assuming that the HR Regime applies, current observations imply a still neutral Universe at $z \sim 6$ $x_{HI} > 0.1$

Wyithe & Loeb 04 Wyithe, Loeb & Carilli 04 Fan etal. 06; Yu & Lu 04

The PE Regime Constraints on Reionization

Proximity Effect (PE) Regime



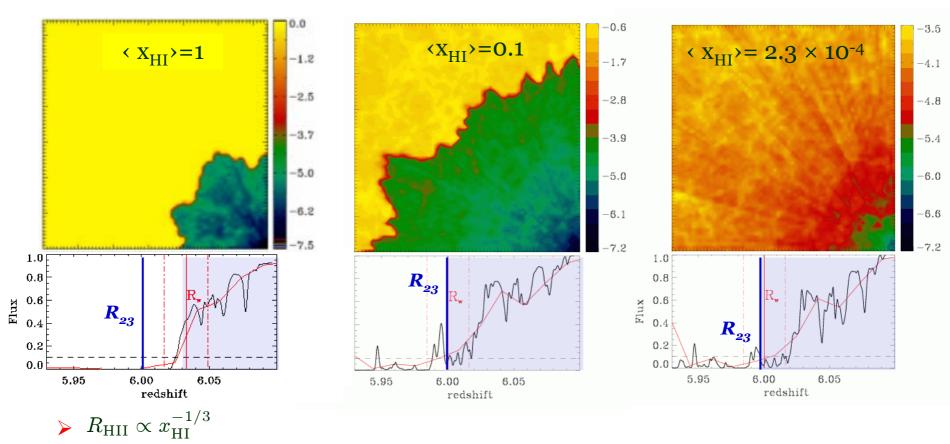
R_w can be **much smaller** than the **H**_{II} **region** size
 R_w & **R**_{HII} **independent**

In PE Regimes **R**_w **don't constraint x**_{HI}. Current observations are consistent with a **highly ionized IGM at z~6**

Bolton & Haehnelt 07 AM et al.07

The Apparent Shrinking Effect

$$x_{\rm HI} < 0.1 \implies R_{\rm HII} > 10 \; {\rm Mpc \; com} \quad (R_{\rm HII} \propto x_{\rm HI}^{-1/3})$$


$$\Gamma_Q \propto R^{-2} \implies$$

At large distances Γ_Q becomes too small to produce enough extra ionization and to keep the IGM transparent

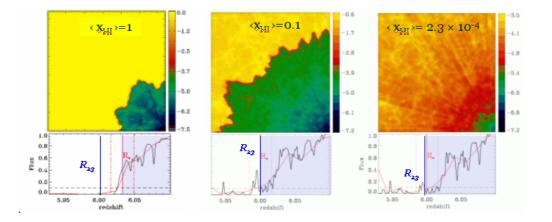
The Apparent Shrinking Effect

SPH + 3D Radiative Transfer (Gadget2 + CRASE) (Ciardi et al.01; AM et al. 03, 08)

 $N_{\gamma} = 2 \times 10^{57} s^{-1}$ $t_{Q} = 10^{7} yr$ $\tilde{z_0} = 6.1$

(CRASHa see Pierleoni, AM, Ciardi 07; Poster)

► $R_w \leq R_{HII}$


 \triangleright **R**_w saturates at a fixed distance from the QSO, independent from **x**_{HI}

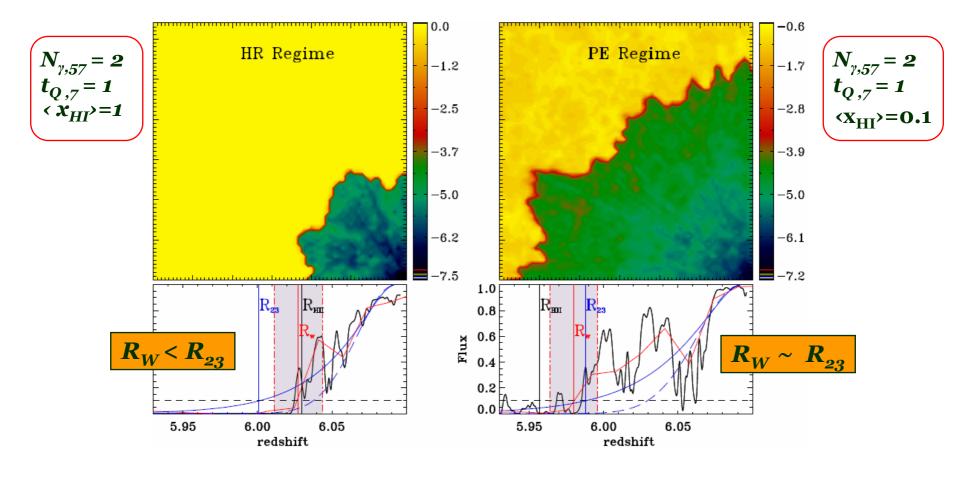
The "Apparent Shrinking" Criterion (ASC)

The **Apparent Shrinking Criterion** allows to discriminate between the HR regime and the PE regime for each given observed QSO

- \mathbf{R}_{w} : extent of the transmission window
- R_{23} : maximum distance from the QSO where transmitted flux can be detected

 R_{23} : maximum distance from the QSO where transmitted flux can be detected (distance from the quasar at which $\tau > 2.3$, i.e. F < 0.1)

$$\begin{split} \textbf{R_{23}} & \text{can be derived semi-analytically requiring } \textbf{F(R_{23})} = \textbf{0.1} \\ & \text{in the following set of equations:} \\ F(R) &= \int_0^\infty e^{-\tau_\Delta(R)} P_\Delta(\Delta) d\Delta \\ \tau_\Delta(R) &= 2.9 \times 10^5 h^{-1} \left(\frac{\Omega_m}{0.26}\right) \left(\frac{\Omega_b h^2}{0.0241}\right) \left(\frac{1+z}{7}\right)^{3/2} x_{\text{HI}}(\Delta, R) \\ \Gamma(R) &= \Gamma_B + \Gamma_Q(R) + \Gamma_G(R) \\ \end{split}$$
 $\begin{aligned} \textbf{R_{23}} & \text{depends on: } \textbf{T} \text{ (temperature), } \textbf{\Gamma}_Q \text{ (quasar luminosity) ,} \\ \Gamma_B \text{ (UVB), } \textbf{\Gamma}_G \text{ (galaxies clustered)} \end{split}$


> T and $\Gamma_{\rm B}$ are constrained from Lya forest observations and reionization models

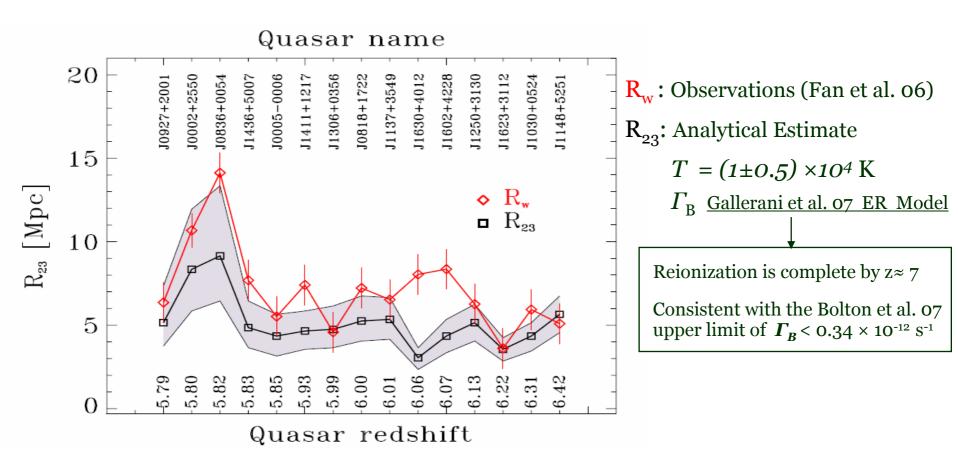
$$\succ \quad \Gamma_Q = \frac{N_\gamma \bar{\sigma}_H}{4\pi R^2} \quad \text{with} \quad \dot{N}_\gamma = \dot{N}_\gamma (M_{1450}, S_\nu) \quad \text{and} \ R_{HII} \not \rightarrow \infty$$

 \triangleright R_{23} is determined assuming a zero contribution from galaxy clustering ($\Gamma_G = 0$)

The "Apparent Shrinking" Criterion

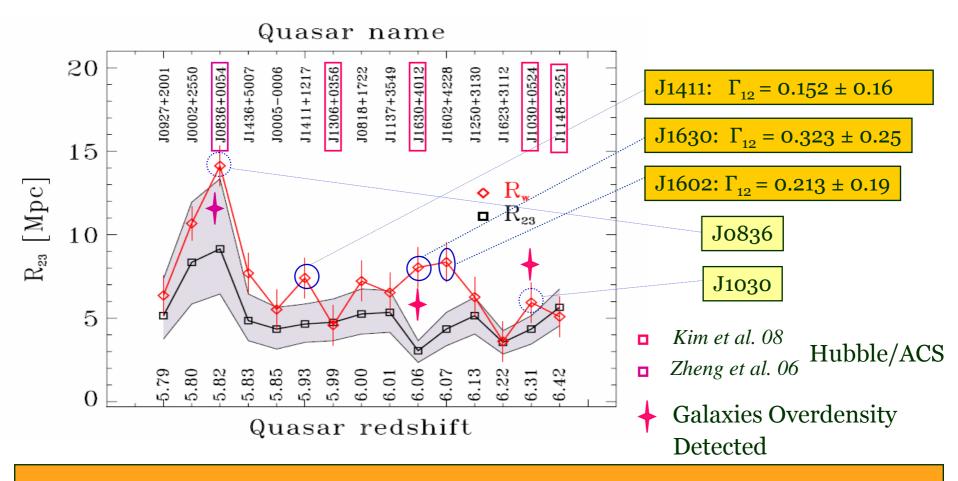
R_w < *R₂₃* : HR Regime → *R_w* = *R_{HII}* and x_{HI} can be constrained.
 R_w = *R₂₃* : PE Regime → the *Γ_G* = *o* assumption is confirmed observationally
 R_w > *R₂₃* : PE Regime → *Γ_G* ≠ *o* and *Γ_G* can be estimated by imposing *F(R_w)* = *o*.1

\succ	$R_w < R_{23}$:	HR Regime	\rightarrow	$R_w = R_{HII}$	and x _{HI} can be constrained.	
---------	------------------	-----------	---------------	-----------------	---	--


 $R_w = R_{23}$: PE Regime \rightarrow the $\Gamma_G = o$ assumption is confirmed observationally $R_w > R_{23}$: PE Regime $\rightarrow \Gamma_G \neq o$ and Γ_G can be estimated by imposing $F(R_w) = o.1$.

$\dot{N}_{\gamma,57}$	\bar{x}_{HI}	$ \begin{bmatrix} t_Q \\ [10^7 \text{ yr}] \end{bmatrix} $	$\begin{array}{c} R_{23} \\ [Mpc] \end{array}$	R_w [Mpc]	Regime					
0.56	0.1	1	2.51(2.96)	2.74 ± 0.96	PE					
0.56	$10^{-4.2}$	1	2.30(2.43)	2.74 ± 1.60	\mathbf{PE}					
2	0.1	1	4.83(5.35)	5.50 ± 1.47	\mathbf{PE}					
2	$10^{-4.2}$	1 _	4.51(4.93)	5.66 ± 1.86	PE					
2	1	1	3.4(4.7)	3.70 ± 0.64	$_{\rm HR}$					
2	1	2	4.2(5.7)	4.55 ± 0.89	$_{\rm HR}$					
111 -	x_{HI} at photoionization equilibrium \leftarrow x_{HI} from RT simulations									

The R_{23} semi-analytical estimate formulated is highly accurate.


The effects of the residual H_{I} inside the H_{II} region can be safely neglected.

The ASC applied to observed Spectra

- **1.** The PE regime applies in all cases: current data do not allow to constraint x_{HI} .
- 2. Current data are consistent with a highly ionized IGM at z≈6.4 , i.e. consistent with "Early Reionization"

The ASC applied to observed Spectra

- **1.** The PE regime applies in all cases: current data do not allow to constraint x_{HI} .
- Current data are consistent with a highly ionized IGM at z≈6.4 ,
 i.e. consistent with "Early Reionization"
- 3. Three QSO spectra show evidence for a local enhanced galaxy clustering

The Apparent Shrinking Criterion (ASC) :

Semi-analytic method which allows to discriminate between H_{II} Region (HR) and Proximity Effect (PE) Regime for each observed high redshift quasar.

All observed quasars spectra are in the PE regime and are consistent with a highly ionized Universe up to z ~ 6.4.

 Five quasars show evidence for a locally enhanced galaxy clustering, in agreement with galaxy counts in fields centred on the same objects (*Kim et al. 08*).

ASC powerful tool for probing the ionization state of the high redshift universe.
 Fainter quasars at higher redshift are more probable to be found in HR regime.