Semi-Numerical Tools Applied to UV Radiative Feedback and Lyα Damping Wing Constraints on Reionization

Andrei Mesinger UCLA

in collaboration with Steven Furlanetto and Mark Dijkstra

Semi-Numeric Toolkit

IAP, Paris, France

Outline

• Efficient "semi-numerical" simulations of structure and reionization

- Recent applications of simulations:
 UV Radiative Feedback and M_{min}
 - Lyα damping wing in non-homogeneous reionization

Outline

 Efficient "semi-numerical" simulations of structure and reionization

- Recent applications of simulations:
 UV Radiative Feedback and M_{min}
 - Lyα damping wing in non-homogeneous reionization

Deus ex Machina (DexM)?

Halo fields

(updated form of the independently developed "peak-patch" formalism of Bond & Myers 1996)

- 1. create linear density and velocity fields (like N-body)
- 2. filter halos from the linear density field using excursionset formalism (e.g. Bond et al. 1991)
- adjust halo locations using linear-order displacements (Zel'Dovich 1970)

Ionization fields (similar to Zahn et al. 2007)

- perturb linear density field using linear-order displacements (Zel'Dovich 1970)
- 5. filter ionized regions from the halo and perturbed density fields using excursion-set formalism (e.g. Furlanetto et al. 2004)

Semi-Numeric Toolkit

IAP, Paris, France 11. july, 2008

Halo Filtering

Mesinger & Furlanetto (2007)

z=8.7 N-body halo field from McQuinn et al. (2007)

IAP, Paris, France

11. july, 2008

Semi-Numeric Toolkit

HII Bubble Filtering

Mesinger & Furlanetto (2007)

RT ionization field from Zahn et al. (2007)

IAP, Paris, France 11. july, 2008

Semi-Numeric Toolkit

Cool PR Movie

available at http://www.astro.ucla.edu/~mesinger

Semi-Numeric Toolkit

IAP, Paris, France

Ionizing UV Flux Fields

Mesinger & Dijkstra (2008)

 $J_{21}^{}/\epsilon_{fid}$

0.05

flux $\alpha \sum L(M_{halo})/r^2 e^{-r/\lambda_{mfp}}$

Semi-Numeric Toolkit

IAP, Paris, France

Outline

• Efficient "semi-numerical" simulations of structure and reionization

- Recent applications of simulations:
 UV Radiative Feedback and M_{min}
 - Lyα damping wing in non-homogeneous reionization

M_{min}?

- Ionizing UVB suppresses gas content of low-mass galaxies (e.g. Efstathiou 1992; Shapiro+1994; Thoul & Weinberg 1996; Hui & Gnedin 1997; Gnedin 2000)
- How important is this negative feedback during reionization? (we focus on atomically-cooled halos, T_{vir}>10⁴ K)
 - can extend reionization
 - early work, z=2 halos with v_{cir} <35km/s completely suppressed; v_{cir} < 100km/s partially suppressed
 - NOT THIS SIMPLE! Not instantaneous; high-z mediated by more compact profiles, increased cooling efficiencies, shorter exposure times (Kitayama & Ikeuchi 2000; Dijkstra+ 2004)
- Can we draw any general conclusions about this exceedingly complex problem?

Semi-Numeric Toolkit

IAP, Paris, France

Systematic approach -> Minimize Assumptions

Does UV radiative feedback impact the advanced stages of reionization? Does/How M_{min} effectively increase in ionized regions?

- We do NOT attempt to self-consistently model reionization (we are humble mortals..)
- LARGE parameter space (small knowledge at high-z):
 z = 7, 10, 13
 - $\langle x_{HI} \rangle$
 - ionization efficiency, ε_{fid} (=1 to match z=6 LAE and LBG LFs)

Two Tier Approach

Mesinger & Dijkstra (2008)

• 1D hydro simulations to model collapse of gas + dark matter under UVB:

$$f_g(M_{halo}, z, J_{21}, z_{on}=14)$$

 Semi-numerical code to model halo, density, ionization and *inhomogeneous* flux fields:
 J₂₁(x, z, <x_H>, ε_{fid})

Global impact

Semi-Numeric Toolkit

IAP, Paris, France

M_{min}

 Factor of 10 increase in ionizing efficiency is required to extend suppression by only factor of 2 in mass.

Semi-Numeric Toolkit

IAP, Paris, France

Being Conservative...

- Assumed hard, QSO-like spectra. Galactic spectra effectively mean $\varepsilon_{fid} = 0.2$
- No self-shielding
- $\Box \lambda_{\rm mfp} = 20 \text{ Mpc}$ (the high-end of z<4 LLS extrapolations; Storrie-Lombardi+ 1994)
- $Z_{on} = 14 (z_{re} = 11.0 + 1.4; \text{Dunkley} + 2008)$ biased halo formation
- No redshift evolution of J_{21} over $z_{on} \rightarrow z$

UV Feedback Conclusions / Implications

- UV feedback on T>10⁴ K halos NOT strong enough to notably affect bulk of reionization (requires factor of ~100 increase in ionizing efficiencies)
- Effectively M_{min} ~ 10⁸ M_{sun} throughout most of reionization when minihalos go away (consistent with claims that faint galaxies dominate photon budget at z>6; Yan & Windhorst 2004a,b; Bouwens+ 2006)
- Natural timescale for bulk of reionization is the growth of the collapsed fraction in T>10⁴ K halos, with small filling factor tail extending to higher z due to T<10⁴ K halos
- Dynamic range is important in modeling reionization!

Outline

• Efficient "semi-numerical" simulations of structure and reionization

- Recent applications of simulations:
 UV Radiative Feedback and M_{min}
 - Lyα damping wing in non-homogeneous reionization

Patchy Reionization

 Almost all reionization constraints are derived assuming a homogeneous x_{HI} or J_{UV} -> wrong!

> QuickTime™ and a mpeg4 decompressor are needed to see this picture.

How wrong? Lets focus on damping wing studies:
– QSOs proximity region (Mesinger & Haiman 2004; 2007)
– GRB after disentangling DLA (Totani et al. 2006)

Semi-Numeric Toolkit

IAP, Paris, France

Bias

- Common reasoning: absorption cross-section is flat in the wings and so is sensitive to a large path length in the IGM, so clumpiness is averaged-over
 Mesinger & Furlanetto (2008)
- Not flat enough! -> bias + scatter

constrain x_{HI} with scatter? Noise --> Signal
bias and scatter are reduced if one probes subset (e.g. R_s>40 Mpc)

Semi-Numeric Toolkit

IAP, Paris, France

Absorption Profile

Impact on Present Damping Wing Studies

 Not clear, however profile is more important than bias: steeper profile -> harder detection
 --> weakens upper limit from Totani et al. 2006
 --> strengthens lower limits from Mesinger & Haiman

2004, 2007

- Scatter likely causes confidence contours to degrade for all studies
- Should be redone! More sources would be nice

Conclusions

- Our semi-numeric simulation can be a very useful scientific tool:
 - density and velocity biases, ionization topology, but also radiative and chemical feedback, LAE studies, training ground for bubble detection algorithms and other 21-cm software, allows for wide parameter studies...
 - Fairly easy to fold-in smaller scale physics calibrated from numerical simulations.

Conclusions, cont.

- UV feedback on >10⁴ K halos NOT strong enough to notably delay bulk of reionization.
- $\sim 10^8 M_{sun}$ halos must be taken into account during reionization even in ionized regions
- Inhomogeneous reionization induces a bias and scatter in damping wing estimates of x_{HI} , when compared to homogeneous reionization. Absorption profile is on average steeper.
- Observations of reionization MUST be interpreted by comparison to models of inhomogeneous reionization

Semi-Numeric Toolkit

IAP, Paris, France