HST/NICMOS & Spitzer/IRAC Observations of 5.7<z<7 Galaxies in the Subaru Deep Field

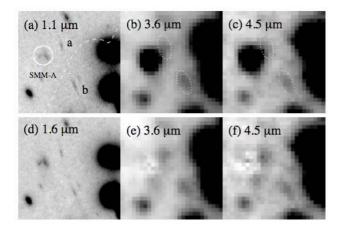
Eiichi Egami Steward Observatory University of Arizona

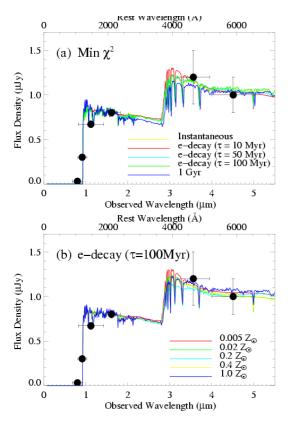
See also the poster by Finkelstein et al.

Collaborators

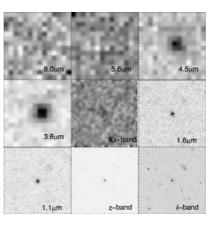
- N. Kashikawa (NAOJ)
- K. Shimasaku (Univ. of Tokyo)
- M. Ouchi (Carnegie Obs)
- R. Ellis (Caltech/Oxford)
- J. Richard (Caltech)
- D. Stark (Caltech)
- J.-P. Kneib (OAMP)
- J. Huang (CfA)
- R. Dave (Arizona)
- K. Finlater (Arizona)

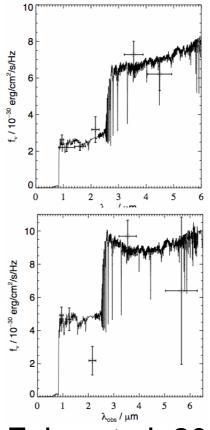
Subaru SDF

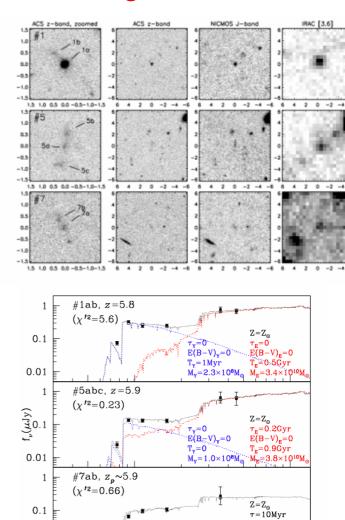

Lensing cluster survey


IRAC team

Simulations


Spitzer/IRAC Detections of z≥6 Galaxies


- IRAC on Spitzer (D=85cm telescope!) has enabled us to study the rest-frame optical SEDs of z>6 galaxies.
 - 3.6/4.5um bands are longward of the rest-frame
 Balmer/4000 A break at z<8
- Some z>6 galaxies seem fairly mature and massive (age ~ 200-300 Myr, ~10⁹⁻10¹⁰M_☉)
- However, the majority seems young and less massive (age < 50-100 Myr, ~10⁸~10⁹M_☉)



Egami et al. 2005

Mature galaxies at z>6!

Eyles et al. 2005

0.01

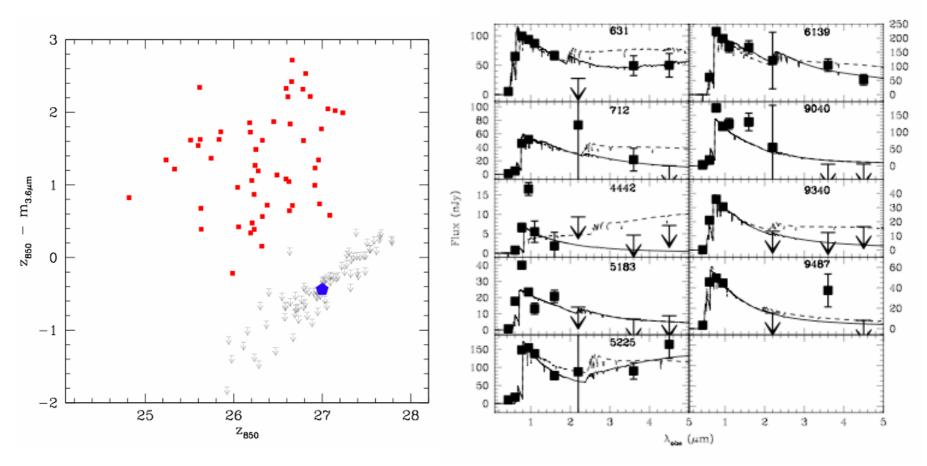
0.5

Yan et al. 2005

Wavelength (μm)

E(B-V)=0

T=0.1Gyr

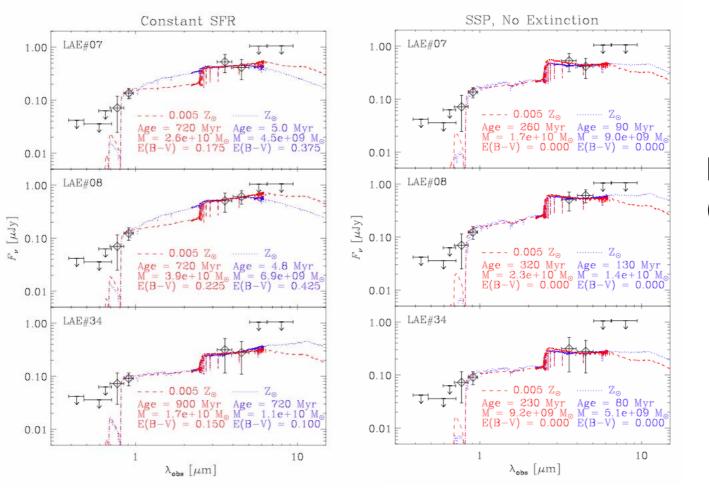

 $M = 4.7 \times 10^{9} M_{\odot}$

10

BUT, there are also many young lower-mass galaxies

 $z\sim6$, i dropouts < 40 Myr, $\sim10^9M_{\odot}$

z=4.0-5.7, LAEs 2-3 Myr, 10^6 - 10^8 M $_{\odot}$


Yan et al. 2006

Pirzkal et al. 2007

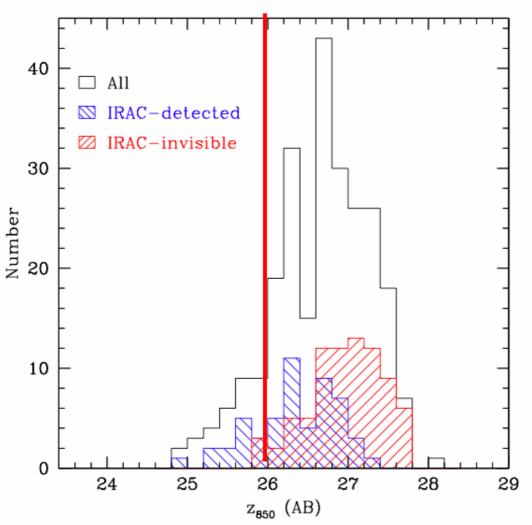
Limitations of the Past Studies

- Targets were selected in deep but small-field surveys (e.g., UDF, GOODS)
 - Sources are faint (especially for IRAC!)
 - → Uncertainty with photometry, phot-z, SED modeling, etc.
 - Spectroscopic redshifts not available in most cases
 - Deep near-IR coverage limited

Importance of Near-IR Data

Lai et al. (2007)

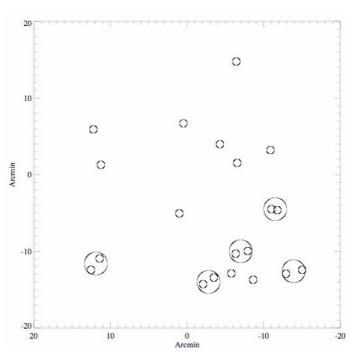
Near-IR data are required to break SED model degeneracy (e.g., young dusty population vs old dust-free population)


Our Strategy

- Target bright (z< 26 AB mag = 0.14 uJy) galaxies with spectroscopic redshifts at 5.7<z<7 -> Subaru Deep Field (SDF)
- Use HST/NICMOS (1.1/1.6 um) and Spitzer/IRAC (3.6/4.5 um) to obtain SEDs.
- Go after source by source instead of mapping a sky area uniformly.
- Ly-alpha properties and continuum properties can be compared.
- Drawback: the sample is biased toward the most luminous galaxies

Subaru Deep Field (SDF)

- Deep Suprime-Cam broad/narrow-band imaging over ~30'x30' (Kashikawa et al. 2004):
 - z~7 LAE survey (lye et al. 2006)
 - z~6.5 LAE survey (Kodaira et al. 2003;
 Taniguchi et al. 2005; Kashikawa et al.2006)
 - z~6 LBG survey (Nagao et al. 2004, 2005, 2007; Ota 2008)
 - z~5.7 LAE survey (Shimasaku et al. 2006)

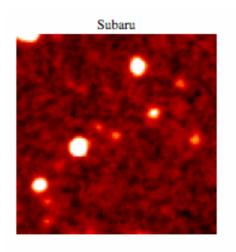


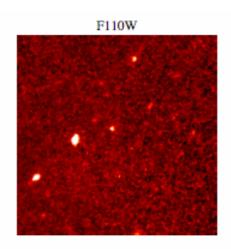
Yan et al. (2006)

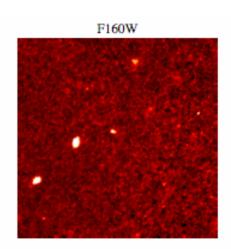
GOODS sample

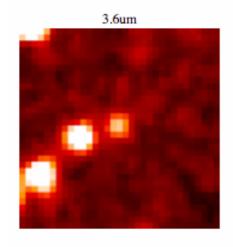
HST-Spitzer <u>Coordinated</u> Program

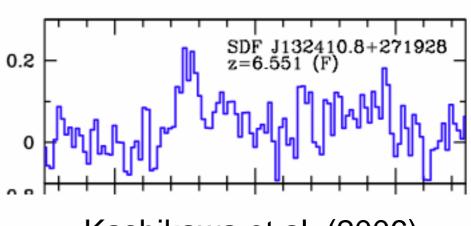
- 20 targets with spec-z
 - 20 NICMOS pointings
 - 15 IRAC pointings
- NICMOS (72 orbits)
 - F110W & F160W; NIC3
 - 1-2 orbits/band
- IRAC (102 hrs)
 - 3.6 um & 4.5 um
 - 3 hrs/band
 - 5.8 & 8.0um data obtained simultaneously

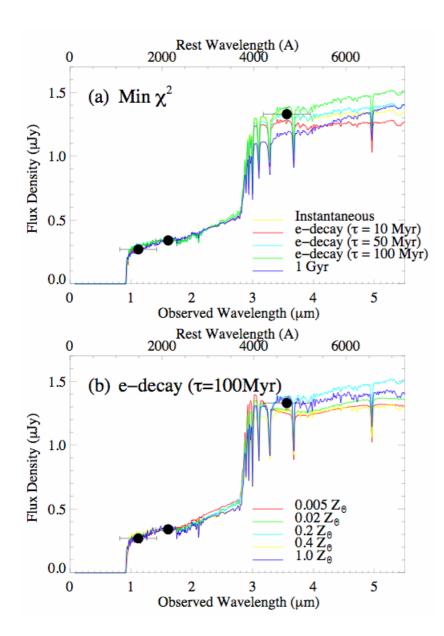


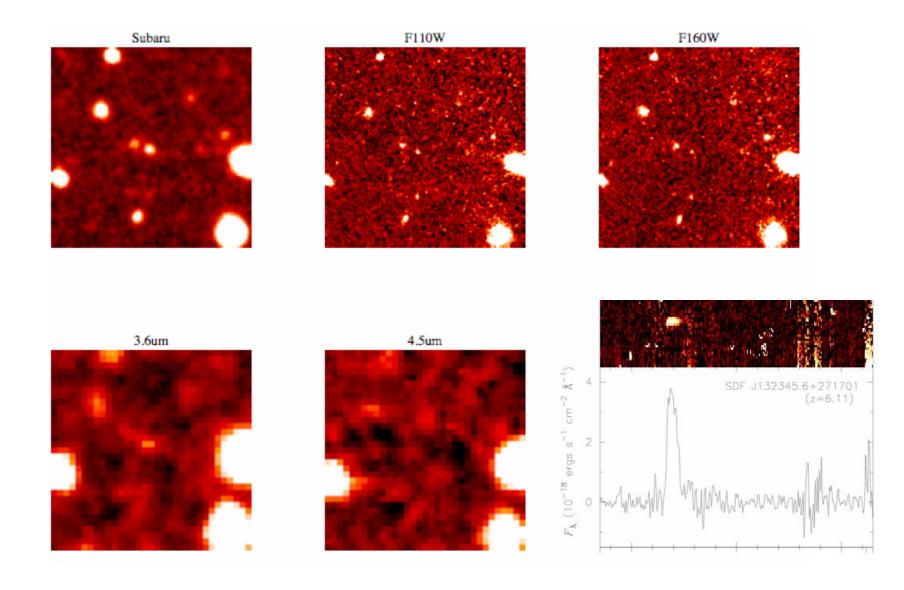

Target list


Table 1: Spectroscopically confirmed bright ($z'_{AB} < 26.0$ mag) z = 5.7 - 7 galaxies in the SDF

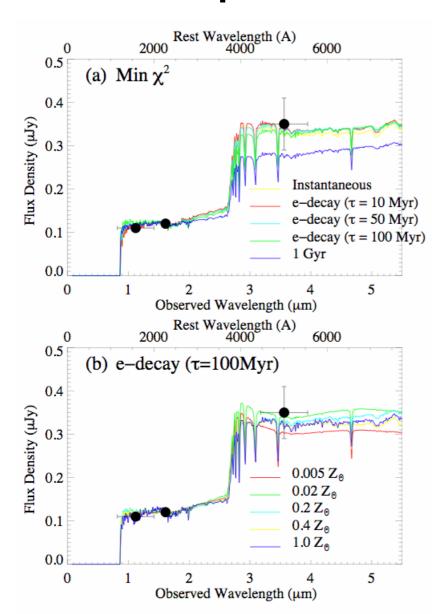

Target	$z_{\rm spec}$	Type	z'_{AB}	Ref	Target	Z _{spec}	Type	z'_{AB}	Ref
SDFJ132359.8+272456	6.96	LAE	26.4^{a}	8	SDFJ132400.3+273238	6.06	LBG	25.88	-5
SDFJ132522.3+273520	6.597	LAE	25.57^{a}	1	SDFJ132442.5+272423	6.04	LBG	25.74	6
SDFJ132357.1+272448	6.589	LAE	25.17^{a}	1,2	SDFJ132426.5+271600	6.03	LBG	25.36	6
SDFJ132518.8+273043	6.578	LAE	25.81^{a}	1	SDFJ132431.5+271509	6.03	LBG	25.89	5
SDFJ132408.3+271543	6.554	LAE	24.94^{a}	1,3	SDFJ132519.4+271829	6.00	LBG	25.42	9
SDFJ132410.8+271928	6.551	LAE	25.13^{a}	1,2	SDFJ132418.4+271633	5.914	LAE	25.75	5
SDFJ132415.7+273058	6.541	LAE	24.73^{a}	1,3	SDFJ132423.7+273324	5.710	LAE	24.73	7
SDFJ132353.1+271631	6.540	LAE	25.57^{a}	1	SDFJ132523.4+271701	5.705	LAE	25.34	7
SDFJ132440.6+273607	6.33	LBG	25.66	4	SDFJ132416.1+274411	5.698	LAE	24.84	7
SDFJ132345.6+271701	6.11	LBG	25.24	9	SDFJ132416.4+271907	5.665	LAE	25.37	7


LAE at z=6.55



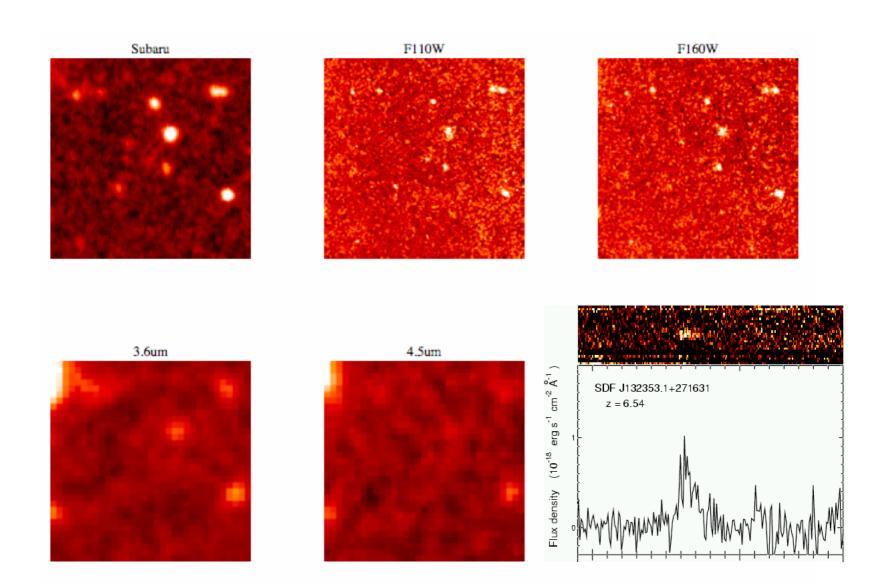

Kashikawa et al. (2006)

LAE at z=6.55 - SED

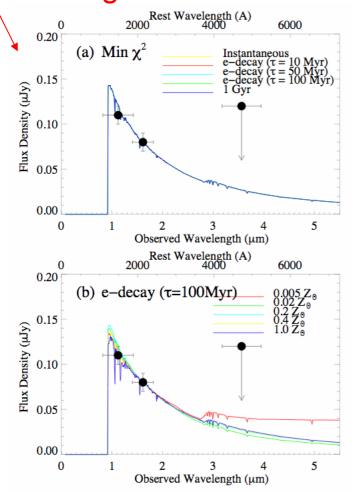


- Bruzual-Charlot 2003 models
- Salpeter IMF (0.1-100 M_☉)
- Age 300-400 Myr
 (> 200 Myr)
- z_form ~ 10
- Mass 3-4x10 10 M $_{\odot}$
- Mature massive galaxy with little extinction

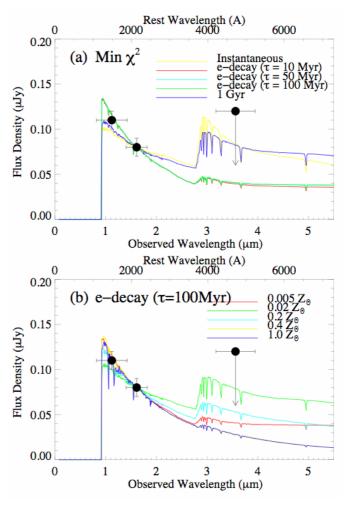
i'-dropout at z=6.11



i'-dropout at z=6.11 - SED


- Age 200-300 Myr
 (> 100 Myr)
- Mass ~ $7 \mathrm{x} 10^9 \ \mathrm{M}_{\odot}$
- Mature galaxy with little extiction (less massive than the previous one)

LAE at z=6.54



Very small age not likely, LAE at z=6.54 -SED

SFR too large

Age ~ 1 Myr

Age ~ 10-100 Myr

In almost all cases, sub-solar metallicity seems required to reproduce the UV slope.

Status & Next steps

- ~1/3 done so far
 - 8 sources observed with NICMOS
 - 7 sources observed with IRAC
 - BUT, only 4 sources common....
- Remaining HST imaging (12 sources) will be done with WFC3
- One more Spitzer visibility window during the cold mission -> if the program cannot be completed, we will try the warm mission.
- Photometric samples will also be studied.

Summary

- We are currently conducting a HST/NICMOS

 Spitzer/IRAC coordinated program, trying to obtain accurate SEDs for 20 galaxies at 5.7<z<7 with spectroscopic redshifts.
- In the small sample at hand (only a few), we see (1) mature old galaxies, and (2) young galaxies, as the previous studies showed.
 The latter have much steeper UV slope.
- So far, we have not seen any indication of significant dust extinction.