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GRB prompt emission :

B
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GRB afterglows :

GRB 970228 : 15t afterglow
localization by BeppoSAX, optical afterglow by van Paradijs et al.
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GRB afterglows i
— rapid decay : hours, days, months, year
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— spectral evolution : X,V radio ) 10 100

Days after GRB
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GRB afterglows :
B

GRB 970508 : 1¢* redshift (Metzger et al. 1997)
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GRB afterglows :

B
GRB 050904 : z = 6.29 !

Localization by Swift ; Redshift at Subar
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TAROT detection (@ 86 s after trigger
I ~ 16 (Boér et al. 2006)
(Quasar : z = 6.37, 1=23.3)
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GRB afterglows :

B
SWIFT : redshift distribution of long GRBs (Jakobsson et al. 2006; see also poster P32)
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GRB afterglows :

B
Swift : - X-ray afterglow in almost 100 % of cases
- Rapid localisation (~min)
- Increased efficiency in measuring z
- The eatly afterglow shows a very surprising evolution

XRT and {extrapolated) BAT light curves z_2—4
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Gamma-ray bursts : models

B
Energetics : 105! — 10%* erg (isotropic)
105! erg (after correction for beaming) ?
(Frail et al. 2001)
Redshift : 0.008 - 6.3
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Gamma-ray bursts : emission mechanisms
B

Paczynski, Rees, Meszaros, Piran, ...
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Time variability + Energetics + prompt gamma-ray spectrum = @\
- highly relativistic / highly energetic outflow (I" > 100)
- ejected by a compact source (BH, NS)
- formed 1n a cataclysmic event (collapsars, coalescence, ...)
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Gamma-ray bursts : emission mechanisms

B
Internal shocks : gamma-ray prompt emission

(alternative models : reconnection in a highly magnetized outflow / a purely em outflow)
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" Good agreement with data -

= Main issues : efficiency, origin of the prompt optical emission (e.g. « naked eye burst »)
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Gamma-ray bursts : emission mechanisms
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Gamma-ray bursts : emission mechanisms

B
Reverse shock : optical flash ?

Forward (external) shock : afterglow X — V — radio

Ll

Ol

®

" pre-Swift era : good agreement with data
= Swift era : this scenario does not explain the observed early afterghs

(alternatives : late energy injection / late activity : problems for the central engine;
long-lived reverse shock model, ...)
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Gamma-ray bursts : emission mechanisms
B

F, (mJy)

Multi-wavelength fits (external shock model)

Panaitescu & Kumar 2001

[ [ \\IIHl T T \\IIII‘ [ T \IHII‘ T 1] N‘O_;H\‘ T \\\Hll T I\I\H‘ T T \I\HI; T \IIHIl T LI T T I\IHIl T

L RADIO] B OPTICAL - 10F X-RAY |
Bl (85GHzZ) _ | % RV band) | LI OFa, (3 or 5 keV)]
—E 4 O £ A = el { ]

o 3 T E = - . 5

C a & !i\ 7 C “i\ 7 i
T . ** " 1.1 § ., o } IE i
o A oo - 9F ’g IOIQ' 1 E - K 7
ToE = 1 TE . i 3 3 ()

i 1 F i " Ml i = LFg/10 % R |

- o 9 \ 4 of S ~ E

i k. 1 - L%K; —% = - EE‘E 3
3 Sl o= e = _ .
2 F..% % T, T TE A ey B =t ! i ]
oF — { Hﬂ * ST - g % 5 1 ok i E
™ ; : " \ f f ; © N A/i‘g h\ \\\ :“‘ ] T E F5k l“, E

- {1 1 oF S - g E B ]

.. | “ .. - ‘—: S I “‘ 3 | & E: |
oF b5 = | <980519 gi} w1 | S —
E £/5 i, 1 T, 990123 e -4 .

R X 1 2E. 990510 ‘ I oF f 4 =
Rl T, T gl 1 -+ 991208 if ; 1 7E } ]
o Y ¥ ; = o | +991216 i ' B I :
—E f h f 7 ©E= v 000301c = L 1

- l ] - 000926 . B il
5 [ | | Sl Bl 5 L p1oeee | | ) K | L |
B 10° 10' 10° 2 10” 10° 10' 10° 2 107 10° 10'

time (day) time (day) time (day)

NP . High redshift GRBs, F. Daigne, XXTV th LAP Conforence, 7-11 July 2008



Gamma-ray bursts : emission mechanisms

XRT observations :

O’Brien et al. 2006
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Genet, Daigne & Mochkovitch 2007 :
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Gamma-ray bursts : the central engine
B

A thick disc surrounding a stellar mass black hole :

- Shortest variability timescale ~ ms (orbital period in the inner region of the disc)

- Energy reservoirs : (1) accretion

(if) BH rotation (extracted by Blandford-Znajek process)

Alternative : magnetars...
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Gamma-ray bursts : initial event
B

Initial event responsible for the formation of the BH + thick disc system :
- Gravitational collapse of a massive star into a black hole (« collapsar » model) ;

This model 1s favored for long GRBs (SN association, association with star formation, ...)

- Some GRBs are associated with supernovae (e.g. GRB 980425, GRB 030329)
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Long GRBs are associated with massive stars

B
GRB 980425 / SN 1998bw GRB 030329 / SN 2003dhr
z=0.008 (Galama et al. 1998) z=0.168 (Stanek et al. 2003)

GRB 030329
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Gamma-ray bursts : initial event
B

Initial event responsible for the formation of the BH + thick disc system :

- Gravitational collapse of a massive star into a black hole (« collapsar » model) ;

This model 1s favored for long GRBs (SN association, association with star formation, ...

- Some GRBs are associated with supernovae (e.g. GRB 980425, GRB 030329)
- Some are not (e.g. GRB 060505 :

nearby burst, z = 0.09, intense photometric/spectroscopic searches :
no visible SN, Fynbo et al. 06; Gal-Yam et al. 06, Della Valle et al. 06)

In the framework of the « collapsar » model, we should always expect a supernova
in assoclation with a gamma-ray burst ?
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Gamma-ray bursts : initial event
B

Initial event responsible for the formation of the BH + thick disc system :
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COLLAPSARS: GAMMA-RAY BURSTS AND EXPLOSIONS IN “FAILED SUPERNOVAE"

A. 1. MAcFADYEN AND S. E. WOOSLEY
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ABSTRACT

Using a two-dimensional hydrodynamics code (PROMETHEUS), we explore the continued evolution
of rotating helium stars, M, = 10 M, in which iron-core collapse does not produce a successful out-
going shock but instead forms a black hole of 2-3 M. The model explored in greatest detail is the 14
M, helium core of a 35 M main-sequence star. The outcome is sensitive to the angular momentum.
For j,, = j/(10'® cm” s™') < 3, material falls into the black hole almost uninhibited. No outflows are
expected. For j,, = 20, the infalling matter is halted by centrifugal force outside 1000 km where neutrino
losses are negligible, The equatorial accretion rate is very low, and explosive oxygen burning may power
a weak equatorial explosion. For 3 <j,, < 20, however, a reasonable value for such stars, a compact
disk forms at a radius at which the gravitational binding energy can be efficiently radiated as neutrinos
or converted to beamed outflow by magnetohydrodynamical (MHD) processes. These are the best candi-
dates for producing gamma-ray bursts (GRBs). Here we study the formation of such a disk, the associ-
ated flow patterns, and the accretion rate for disk viscosity parameter o = 0.001 and 0.1. Infall along the
rotational axis is initially uninhibited, and an evacuated channel opens during the first few seconds.
Meanwhile the black hole is spun up by the accretion (to a &~ 0.9), and energy is dissipated in the disk by
MHD processes and radiated by neutrinos. For the o= 0.1 model, appreciable energetic outflows
develop between polar angles of 30° and 45°. These outflows, powered by viscous dissipation in the disk,
have an energy of up to a few times 10°' ergs and a mass ~1 M, and are rich in **Ni. They constitute
a supernova-like explosion by themselves. Meanwhile accretion through the disk is maintained for
approximately 10-20 s but is time variable (+30%) because of hydrodynamical instabilities at the outer
edge in a region where nuclei are experiencing photodisintegration. Because the efficiency of neutrino
energy deposition is sensitive to the accretion rate, this instability leads to highly variable energy deposi-
tion in the polar regions. Some of this variability, which has significant power at 50 ms and overtones,
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Gamma-ray bursts : initial event
B

Initial event responsible for the formation of the BH + thick disc system :

- Gravitational collapse of a massive star into a black hole (« collapsar » model) ;

This model 1s favored for long GRBs (SN association, association with star formation, ...

- Some GRBs are associated with supernovae (e.g. GRB 980425, GRB 030329)
- Some are not (e.g. GRB 060505 :

nearby burst, z = 0.09, intense photometric/spectroscopic searches :
no visible SN, Fynbo et al. 06; Gal-Yam et al. 06, Della Valle et al. 06)

In the framework of the « collapsar » model, we should always expect a supernova
in assoclation with a gamma-ray burst ? no !

Stellar collapse : - direct collapse into a NS : normal SN
(type : 11, Ib, Ic depending on the mass of the progenitor)
- direct collapse into a BH : original collapsar model,
a GRB is possible, a supernova is a priori excluded (but...)
- two-steps collapse : (i) NS ; (i) BH.
A GRB is possible, a supernova is expected.
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Gamma-ray bursts : initial event
B

Initial event responsible for the formation of the BH + thick disc system :
- Gravitational collapse of a massive star into a black hole (« collapsar » model) ;
- Coalescence of two neutron stars (or BH/NS merger).

Often suggested for short GRBs, still uncertain.
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Short GRBs : NS-NS mergers ?

B
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Gamma-ray bursts : relativistic ejection
B

Neutrino-antineutrino annihilation
along the rotation axis of the system
(problem : efficiency 1s weak, long duration is difficult)

Limitation of the « baryonic pollution » :

To reach high terminal Lorentz factors, it is necessary to
inject a large amount of energy in a small amount of
matter, i.e. to have E / Mc? >> 1.
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Gamma-ray bursts : relativistic ejection
B

MHD outflow

Ejected from the disc and/or from the black hole

Limitation of the « baryonic pollution » :

To reach high terminal Lorentz factors, it is necessary to

inject a large amount of energy in a small amount of
matter, i.e. to have E / Mc? >> 1.
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Gamma-ray bursts : escaping a collapsing star
I

(a) Model JA: 2.1 s (b) Model JA: 7.2 s
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Gamma-ray bursts : propagating in a dense medium ?

A=10" T 1 S

A complex circumburst environment is expected :

4x10
Rodius / cm.

T

T

T -
b =2
Z Stalled ISM
a Wind )
Free e U e S
Wind
Radius —
Afterglow fits using the external shock model : usually a
low-density uniform medium is prefered ! -
e.g. GRB 030329 n ~ 2 cm™ (Berger et al. 2003) S
i o "':—
Weak stellar wind ? (van Marle 2007, Chen et al. 2007, ...) DA
5
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Gamma-ray bursts : rates
B

Gamma-ray bursts pointing towards the Earth :
~ 1 GRB for 10° supernovae (this ratio could vary with z)

True rate :

X beaming correction ~ 1000 ? (Frail et al.)

(see also Soderberg et al.)
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How to produce a Gamma-Ray Burst ?
B

Summary :

- A highly relativistic / highly energetic outflow ejected by a compact source (BH)
seems necessary to explain the observed properties of GRBs;

- For long GRBs, the event responsible for the formation of the central engine 1s
most probably the collapse of a massive star.

The detailed conditions (mass, metallicity, rotation, ...) that are necessary
for a star to produce a gamma-ray burst are very pootly understood.

Long GRBs should occur in star-forming regions. The circumburst medium
should be dominated by the matter ejected by the progenitor.

- The status of short GRBs 1s less clear. If the NS+NS merger scenario 1s correct,
they should occur far from the center of their host galaxy, in a low density
medium, and have weak afterglows. They should not occur at very high redshift.
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Should we expect high redshift (long) GRBs ?
B

Yes - because first massive stars are expected at very high redshift (z ~ 30);
- a low metallicity seems to favor the production of gamma-ray bursts.

No - if the first massive stars do not end as a black hole (PISNae)
or collapse entirely into a black hole;
- if other conditions that are not identified (rotation, binarity, ...)
are necessary and not fulfilled for the first stars.

1 00 MILLION YEARS

BIG
BANG

EMISSION UF COSMIC
BACKGROUND :
RADIATION DARK AGES

FIRST STARS

From Larson & Bromm 2001
FIRST
SUPERNOVAE :
AND BLACK HOLES PROTOGALAXY
X MERGERS -
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Should we expect high redshift (long) GRBs ?

In the redshift range z ~ 6 - 10 : yes, very probably

as massive stars in the same mass range as in the low-redshift Universe are already formed and a
large range of metallicities can be expected in star-forming structures at this epoch.

1 MILL
BIG E
BANG
EMISSION OF COSMIC
BACKGROUND :
RADIATION DARK AGES :
FIRST STARS

From Larson & Bromm 2001

FIRST
SUPERNOVAE

AND BLACK HOLES PROTOGALAXY
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Can we detect high-redshift GRBs ?

Prompt emission : - GRBs are intrinsically very bright
- the Universe is transparent for low energy gamma-rays.
Yes ! - it has already be done (GRB 050904 at z = 6.3)
- for 2 GRB with a known redshift, one can estimate the maximum redshift
allowing detection with a given instrument : in many cases, z ~ 10 or higher.

Afterglow : - one needs to search for the afterglow as soon as possible after the
trigger :

Yes but it is

difficult. for an observation at t , = 10 minutes :

t = 5 minutes at z=1

t = 2 minutes at z = 4

t = 1minute atz =9

in the source frame
the increase of D; can be partially compensated by the increase of the
instrinsic luminosity (afterglows are decaying sources).
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Can we detect high-redshift GRBs ?

Prompt emission : - GRBs are intrinsically very bright
- the Universe is transparent for low energy gamma-rays.
Yes ! - it has already be done (GRB 050904 at z = 6.3)
- for 2 GRB with a known redshift, one can estimate the maximum redshift
allowing detection with a given instrument : in many cases, z ~ 10 or higher.

Afterglow : - one needs to search for the afterglow as soon as possible after the
trigger.

Yes but it is

difficult... - one needs to observe in infrared (visible is absorbed).

See e.g. discussion in Lamb & Reichart 2000
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Can we detect high-redshift GRBs ?

B
(1) GRB detection :
t, satellite with real-time localization (17) SWIFT
t, +10s transmission to the ground SVOM (2012),
(2) Afterglow detection : SWIFT/XRT
t, +30s robotic telescope : localization (17) ¢ RAPTOR,
t, +1-2 min real-time transmission REM,
ROTSE,
+ infrared is needed (high-redshift / dust) ¥ TAROT, ...
(3) Afterglow follow-up : e.g. GROND,
t, +1-2min - weeks  photometry (early times « small telescopes »)i see Greiner’s
talk
t, +1-2min — hours ~ minimal spectroscopy : redshift
KECK ___— high-resolution spectroscopy (large telescopes)

VLT/UVES
VLT/XSHOOTER (‘08) + infrared is needed (high-redshift / dust)
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An exemple :
B

GRB 060418 : Vreeswijk et al. 2007

Trigger by SWIFT /BAT : t, 3
X-ray afterglow SWIFT /XRT : t,+1min 57
VLT /UVES using the « rapid response mode » : t0+10 min 17

(+ a human astronomer at t,+7 min to align the
UVES slit (17) on the afterglow)

Soon :
Spectra at t,+11, 16, 25, 41, 71 min XSHOOTER @ VLT
resolving power 7 km/'s is a spectrometer (UV, V, IR)
S/N = 10-15 especially designed for such

studies (first light : end of 2008) B
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Real time alerts with accurate positions
I

- Swift still funded for at least 3 more years;

- GLAST : -low energy (GBM) : large error boxes (~ BATSE)
- high-energy (LAT) : accurate positions (expected rate ?)

- Future missions :  several projects have been proposed

SVOM : a Sino-French satellite to be launched in 2012.

- gamma-ray telescope (coded mask)
trigger + real time position (4-300 keV)

- gamma-ray detector (50 keV-5 MeV)
- X-ray telescope

- Optical telescope
+ 2 robotic ground-based telescopes (GFC)
+ GWAC (prompt optical)
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GRBs and cosmology : afterglow spectroscopy

Host galaxy

Intervening medium (IGM)



GRBs and cosmology : afterglow spectroscopy
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GRBs and cosmology : afterglow spectroscopy

Host galaxy :

- circumburst medium

- ISM

Intergalactic medium

e.g. GRB 050730 2=3.969
(Chen et al. 05)

R=17.7 4 hours after the burst

ISM : NHID)=22.15
IGM: DLA @ 7=3.564

LIS @ 3.022

Mgll abs. @ 2=2.253, 1.773

Normalized Flux

- a sample of high-redshift galaxies (e.g. the study of the host of GRB
050904 at z=06.3 by Berger et al. 2007)

e [
, *_ J . is.d.m..[!

A

|
Sil¥1264]
O

g,

Sill*1265!

""M][M

-100-50 0 60 -100-560 O 50 -100-50 O 50 -100-50 O 650 —-100-50 O &0

T D W

CI 13

Relative Velocity (km/s)



GRBs and cosmology : afterglow spectroscopy

B
Host galaxy : - a sample of high-redshift galaxies
- circumburst medium
-ISM

Intergalactic medium

P Chemical evolution (structures, IGM) (see Sandra Savaglio’s talk)
» Reionization ? The question of host-DLAs : GRBs occur in the central regions of
galaxies : frequent association with HI absorption.

(see Prochaska et al. 2007, McQuinn et al. 2007 and simulations by Nagamine et al. 2008)

» QSOs vs GRBs : some differences e.g. frequency of MgII absorbers
(see Poster P35 by Vergani et al. and discussion therein)
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GRBs and cosmology : tracing the SFR ?
B

GRB host galaxies can be studied, and this include the measurement of the SFR.

On the other hand, deducing the cosmic SFR directly from the GRB rate is probably
not possible, as observations give some evidence that the GRB rate is not
proportionnal to the SFR.

- GRBs occur usually in low-metallicity small blue galaxies, which are not representative of the
star formation rate at a given redshift

Le Floch et al. 2003 ; LLe Floch et al. 2006

- the observed GRB redshift distribution does not support the assumption that GRB trace the
SFR (Daigne et al. 20006; Dermer et al. 2006; Piran & Guetta 2007).
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GRBs and cosmology : tracing the SFR ?

Amati-like relation

Log—normal E, distribution
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GRBs and cosmology : tracing the SFR ?
I

GRB host galaxies can be studied, and this include the measurement of the SFR.

On the other hand, deducing the cosmic SFR directly from the GRB rate is probably
not possible, as observations give some evidence that the GRB rate is not
proportionnal to the SFR.

- GRBs occur usually in low-metallicity small blue galaxies, which are not representative of the
star formation rate at a given redshift

Le Floch et al. 2003 ; LLe Floch et al. 2006

- the observed GRB redshift distribution does not support the assumption that GRB trace the
SFR (Daigne et al. 20006; Dermer et al. 2006; Piran & Guetta 2007).

The efficiency of GRB production by stars increase with z ?

see Poster 33 Lapi et al. and Poster 31 Campisi et al.
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GRBs and cosmology : measuring (€,,,Q,) and even more ?
B

- GRBs are not standard candles

(E, o ~ 100 — 105 erg) 1.4} -
- Observed correlation could in principle

be used to « standardize » GRBs 121 iy

(e.g. « Ghirlanda relation » between |

E_ and Ey) 1.0} i
However : S 0.8 _ |
- The reality of these relations is debated f
(instrumental effects ? Physical origin ?) 0.6 =
- Dispersion 1s large. -

- Calibration is difficult (low-z GRBs are rare) 0.4 B

On the other hand : 0.2 i
- high-z GRBs could help in separating [
cosmological models that differ only at high z. 0.0

0.0 0.5 1.0 1.5

QM Ghitrlanda et al. 2005
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Conclusion
[ .

12 years after the discovery of the first GRB afterglow :

- the strategy to discover afterglows when they are still very bright has been well identified.
It involves a complex chain of instruments (Y-ray satellites, real time transmission of the
position; automatic response by robotic telescope and large telescopes in rapid mode).

- this strategy is well illustrated by the efficiency of Swift.

First year of Swift : INTEGRAL: 14 GRBs (2-3") 1 redshift
HETE?2 : 11 GRBs (2-15°) 3 redshifts
Swift 110 GRBs (2-4) 29 redshifts

- however the maximum redshift is « only » z__ = 6.3 and there are « only » 4 GRBs at z > 5.
The full potential of using GRBs to probe the distant Universe is still not achieved.

(chemical evolution, reionization, host galaxy properties, ...)

- Many new instruments are starting now or soon (e.g. GROND, XSHOOTER, ...).
Rapid follow-up in (near)-infrared band should help to identify higher redshift GRBs.
Optimization of triggers could be necessary (Swift ? ; SVOM).
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