

« From Dust to Galaxies » , Institut d'Astrophysique de Paris, June/July 2011.

> Resolving the dust properties in Nearby Galaxies with Herschel and LABOCA

Maud Galametz, Institute of Astronomy, Cambridge

Collaborators: R. Kennicutt, F. Walter, B. Draine, G. Aniano, D. Dale and the Kingfish team M. Albrecht, F. Bertolai and A. Weiss

1 - The Kingfish key programme

2 – Herschel/Planck new results on dust properties What motivates our study

3 - The Kingfish / LABOCA project

The KINGFISH programme

Key Insights on Nearby
Galaxies : a Far-Infrared Survey
with Herschel (PI: R. Kennicutt)

Imaging and spectroscopic survey of 61 nearby galaxies

Goals:

- Star formation in the ISM
- Heating/cooling processes
- Cold dust and gas
- Radio / IR correlation
- Metal abundance $(7.5 \rightarrow 9.5)$

Kingfish with Herschel

Biggest mirror ever sent to space

Photometric and spectroscopic observations

Angular resolution of the instruments

	PACS			SPIRE		
λ	70 µm	100 µm	160 μm	250 μm	350 μm	500 µm
FWHM	5.2 "	7.7 ′′	12 "	18 "	25 "	36 "
For Kingfish	n galaxies :		-			
At 3 Mpc	~ 75 pc	~ 110 pc	~ 175 pc	~ 260 pc	~ 360 pc	~ 520 pc
At 31 Mpc	~ 780 pc	~ 1.2 kpc	~ 1.8 kpc	~ 2.7 kpc	~ 3.7 kpc	~ 5.4 kpc
					at as a second	
From Dust to Galaxies, Institut d'Astrophysique de Paris, June 28 th , 2011 - 4 -						

1 Kingfish with Herschel Probing the cold phases of dust with SPIRE NGC 6946

→ Individual SEDs of the star forming regions / diffuse ISM → Resolve the properties (dust heating - T - β) of cold dust

From Dust to Galaxies, Institut d'Astrophysique de Paris, June 28^{ih}, 2011

- 6

Herschel (and Planck) first results

Submm dust properties

 ✓ Excess detected in some low-metallicity galaxies (Gordon et al., 2010, Planck Collaboration 2011)

 ✓ Herschel data require new dust properties to obtain physical D/G. (Meixner et al., 2010, Galametz et al., 2010)

Submm excess: possible origins

Another type of dust grains

Rotating charged dust grain (« spinning dust»)
(Draine & Lazarian, 1998; Hoang et al., 2010; Bot 2010)

Very cold dust

(Galliano et al., 2003, 2005; Galametz et al., 2009, 2011)

Different dust properties

 Anti-correlation between β and the temperature (Dupac et al., 2003; Meny et al., 2007)

Fractal aggregates / coagulation of grains
 (Bazell et al. 1990; Stepnik et al., 2001; Paradis et al., 2009

Amorphous carbon grains instead of graphite

(Serra Diaz-Cano & Jones, 2008; Meixner et al., 2010)

Global photometry and colours

Positions of the galaxies in a PACS/SPIRE colour-colour diagramme

- Deviations from a single modified-blackbody model
- Strong variations with metallicity

11 KINGFISH galaxies observed with :

SINGS + PACS (70-160 μm) + SPIRE (250-500 μm) + LABOCA (870 μm)

Resolution of SPIRE 250 (19 '') Coldest phases of dust Submm Excess Distribution

Global dust temperatures

SED modelling with two modified blackbodies

 \checkmark

$L(\lambda) = \lambda^{-2} B(\lambda, T_w) + \lambda^{-\beta c} B(\lambda, T_c)$

Global dust properties

SED modelling with two modified blackbodies

Dust temperature maps

Pixel-by-pixel SED modelling – β_{cold} fixed to 2

✓ Variation on the dust temperature
✓ Decreases in the outer parts
✓ Shift of the scale if β_c fixed to 1.5

From Dust to Galaxies, Institut d'Astrophysique de Paris, June 28th, 2011

NGC 3627

 10^{8}

Residual maps at 870 µm

Can we detect a submm excess locally ?

 $870 \ \mu m$ not used in the fitting procedure

Extrapolation of the fitting to create 870 μ m maps

Comparison with the observed 870 µm emission

Evolution of the excess with the emissivity index

$T - \beta$ correlation

Individual pixels in the $T_{cold} - \beta_{cold}$ parameter space

✓ Eddington bias ?
→ unlikely

✓ Changes in the emissivity index ?

✓ Mixture of temperatures along the line of sight ?

Further studies to come

Short-term objectives

Understand the origin of the 870 μm excess

 Use a more complex SED modelling to access to the dust temperature range per ISM mass element (Draine et Li., 2007)

Access to the dust mass distribution

Longer-term

Combine the dust information with the gas tracers

Study the excess at the scale of a star forming region