

Redshift evolution of the cosmic infrared background

Vieira, Béthermin, Bock, Marsden, Viero and HerMES (in prep.)

 \rightarrow We combine deep public data sets (Spitzer/MIPS 24) microns catalog, spectroscopic redshift, photometric redshifts), and associate a redshift to 99.9% of the 1420 S24 >40 uJy sources in the GOODS-N field. We use this catalog to perform a stacking analysis and study the redshift evolution of the cosmic infrared background (CIB).

 \rightarrow We measure the total contribution of the 24 um sources CIB by stacking in the Spitzer/MIPS (70 and 160 μ m), Herschel/SPIRE(250, 350 and 500 µm), and AzTEC (1.1mm) maps. We are able to resolve the majority ($\sim 70\%$) of the CIB. (Fig. 1). The longer wavelengths probing the high redshift CIB and fully sampling the peak in the CIB SED.

 \rightarrow We break the sample in redshift bins to study the evolution of the CIB, and detect a peak in the CIB at $z\sim1$. These measurements will help fine tune evolutionary models of the CIB (see Fig. 2).

Ultra deep number counts at 250, 350 and 500 µm and CIB build-up

Béthermin, Le Floc'h, Ilbert, Roseboom, and HerMES (in prep.)

 \rightarrow In COSMOS, we use the S24>80 uJy catalog matched with the photometric redshifts (Le Floc'h+2009, Ilbert+2009) to probe source counts below the Herschel/SPIRE confusion limit.

 \rightarrow We extract sources from the SPIRE map using the 24 m fluxes and redshifts as a prior. This method enables a measurement the counts per redshift slice down to 20 mJy in the SPIRE bands.

 \rightarrow We determine the mean color and the scatter of the 24 µm sources in several flux and redshift slices, and reconstruct the SPIRE source counts below the confusion limit (~6 mJy). We expect to reach 2 mJy in GOODS-N. Fig. 3 shows the counts of Béthermin+2011 model with the error bars coming from a simulation.

squares (GOODS-N). The positions of the points come from the Béthermin+2011 model and the error bars from a simulation.

TOP RIGHT: Fig. 4: Redshift distributions of the SPIRE sources at 250, 350, and 500 µm for a flux cut of 20 mJy (top) and 6 mJy (bottom). The positions of the points come from the Béthermin+2011 model and the error bars from a simulation.

BOTTOM LEFT: Fig. 5: Cumulative contribution to the CIB as a function of the flux at 250 (left), 350 (center) and 500 µm (right). The positions of the points come from the Béthermin+2011 model and the error bars from a simulation. In red: SPIRE measurements by stacking. The asterisks represents the faintest flux probed by stacking. In violet: FIRAS absolute measurement (Lagache+2000). In blue: BLAST resolved sources (Béthermin+2010b). In green: SPIRE resolved sources (Oliver+2010). In cyan: BLAST stacking (Béthermin2010b).

 \rightarrow Using the same methods, we measure the redshift distribution of the resolved SPIRE sources. The Fig. 4 shows the counts of Béthermin+2011 model with the simulated data and error bars.

 \rightarrow Finally, we integrate the number counts to estimate their contribution to the CIB (see Fig. 5), and compare the results with the previous measurements (Béthermin+2010b, Oliver+2010).