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The superposition principle

◮ Let Ψ1 and Ψ2 be physical states. Then, αΨ1 + βΨ2 is
again a physical state.
For more than one degree of freedom, this leads to an
entanglement between systems.

◮ Linearity of the Schrödinger equation: the sum of two
solutions is again a solution.

Classical states only form a tiny subset of all possible states.

Erwin Schrödinger 1935:
I would not call that one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of
thought. By the interaction the two representatives (or ψ-functions) have
become entangled. . . . Another way of expressing the peculiar situation is:
the best possible knowledge of a whole does not necessarily include the best
possible knowledge of all its parts, even though they may be entirely
separated . . .



A particular example (Vienna experiment)

tetraphenylporphyrin (C44H30N4) (left) and fluorofullerene C60F48 (right)
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Interference pattern of tetraphenylporphyrin

L. Hackermüller et al., Phys. Rev. Lett. 91 (2003) 090408



Decoherence

S A✲ E✲
✲
✲

The superposition principle leads to
(
∑

n

cn|n〉|Φn〉

)

|E0〉
t

−→
∑

n

cn|n〉|Φn〉|En〉

All local observations follow from the reduced density matrix for
system plus apparatus:

ρSA ≈
∑

n

|cn|
2|n〉〈n| ⊗ |Φn〉〈Φn| if 〈En|Em〉 ≈ δnm

The interferences exist, but they are not there.

Decoherence: Emergence of classical properties through the
unavoidable, ubiquitous, and irreversible interaction with the
environment (Zeh 1970)



Experimental test of decoherence

Left: Decoherence through particle collisions.
Right: Decoherence through heating of fullerenes.

Figure credit: M. Arndt and K. Hornberger, arXiv:0903.1614v1



Interpretation

◮ Universality of unitary quantum theory: Everett or
many-worlds interpretation

◮ Unitary quantum theory plus classical configurations:
de Broglie–Bohm theory

◮ Unitarity-violating modifications: collapse models
◮ Pragmatic approaches such as the Copenhagen

interpretation

Here, I will restrict myself to the first option.1

1For other approaches, cf. the talks by S. Das, P. Peter, N. Pinto-Neto, . . .



Quantum cosmology

Gell-Mann and Hartle 1990:
Quantum mechanics is best and most fundamentally
understood in the framework of quantum cosmology.

Bryce DeWitt 1967:
Everett’s view of the world is a very natural one to adopt in the
quantum theory of gravity, where one is accustomed to speak
without embarassment of the ‘wave function of the universe.’ It
is possible that Everett’s view is not only natural but essential.



Particular approaches

◮ Quantum general relativity
◮ Covariant approaches (dynamical triangulation, . . . )
◮ Canonical approaches (quantum geometrodynamics,

loop quantum gravity, . . . )

◮ String theory

Here: Wheeler–DeWitt equation for Friedmann–Lemaı̂tre
universe plus scalar field plus small fluctuations of metric and
field

HtotΨ = 0



Semiclassical approximation

Expansion of the Wheeler–DeWitt equation in powers of m−2
P

◮ First order: Hamilton–Jacobi equation for general relativity

◮ Second order: Quantum theory in curved spacetime; wave
function is of the form

Ψ ∝ exp(im2
PS0[gravity])ψ[gravity,matter]

and obeys a Schrödinger equation with time defined from S0.

◮ Third order: Quantum gravitational corrections ∝ m−2
P .



Decoherence in quantum cosmology

How do the superpositions of different geometries decohere?

◮ System: global degrees of freedom (scale factor, inflaton, . . . )

◮ Environment: small density fluctuations, gravitational waves, . . .

(Zeh 1986, C.K. 1987)

Example: scale factor a of a de Sitter universe (a ∝ eHIt) (system)
experiences decoherence by gravitons (environment) according to

ρ0(a, a
′) → ρ0(a, a

′) exp
(
−CH3

I a(a− a′)2
)
, C > 0

The Universe assumes classical properties at the beginning of
inflation (Barvinsky, Kamenshchik, C.K. 1999)



Superpositions of states containing exp(im2
PS0[gravity]) with

their complex conjugate experience decoherence through
interaction with (for example) weak gravitational waves

1

23

4
1

2 3

4
V(z)

|1>

|2>

Analogy: Molecular structure from decoherence by scattering events

Example for the decoherence factor (C.K. 1992):

exp

(

−
πmH2

0a
3

128~

)

∼ exp
(
−1043

)

This justifies the semiclassical approximation to quantum gravity.



Predictions in quantum cosmology

Anthropic interpretation We find ourselves in a decohered branch of
the wave function that is suitable for life (landscape
picture)

Peak in the wave function If the wave function is peaked around
particular values of a, φ, . . ., this corresponds to the
prediction that these values occur with high probability;
if the wave function vanishes, the corresponding values
are not allowed (relevant e.g. for singularity avoidance).

Semiclassical interpretation The wave function can only be
interpreted in the semiclassical regime, where an
approximate WKB time emerges.

Interpret heuristically a sharp peak in the wave function as a
prediction: Inflation then occurs “naturally” if Ψ has a peak at a
sufficiently large value of the inflaton field φ.



Inflation from quantum gravity

Which wave function, if any, does predict the occurrence of inflation?

◮ No-boundary condition: since ψno-boundary ∼ exp
(

1
3V (φ)

)

, it

favours small values of φ unsuitable for inflation

◮ Tunnelling condition: since ψtunnel ∼ exp
(

− 1
3V (φ)

)

, it favours

large values of φ potentially suitable for inflation

Beyond tree-level approximation?

◮ This result also holds at the one-loop order (Barvinsky and

Kamenshchik 1990)

◮ In this way, Higgs inflation2 and natural inflation3 can be
predicted from the tunnelling wave function

2Barvinsky, Kamenshchik, Steinwachs, C.K. (2010)
3Calcagni, Steinwachs, C.K. (2014)



Hierarchy of classicality

Full quantum state of gravity plus matter

⇓

Classicality of ‘background’ gravitational field

⇓

Classicality of other ‘background’ fields

⇓

Classicality of primordial fluctuations



Primordial fluctuations

What are they?
The primordial fluctuations in cosmology are small
perturbations of the metric and the inflaton field; they can be
described by a massless scalar field φ in a (here, flat)
Friedmann–Lemaı̂tre universe.

One has tensor modes (gravitons)4 and scalar modes.

Fourier transform: yk := aφk = y∗−k

In the following (for simplicity): one real mode y

4If the original interpretation of the BICEP2 observations were correct, this
would be the first empirical test of quantum gravity.



Quantum description of the modes

Schrödinger equation per mode:

i~
∂ψ(y, t)

∂t
= Ĥψ(y, t)

Hamiltonian per mode:

Ĥ =
1

2






p2 + k2y2 +

2ȧ

a
yp

︸ ︷︷ ︸

→squeezing







Initial condition given by ground state:

ψ(y, t) =

(
2ΩR(t)

π

)1/4

exp
(
−Ω(t)y2

)
, Ω := ΩR + iΩI



The dynamics generates a squeezing of the quantum state:5

ΩR =
k

cosh 2r + cos 2ϕ sinh 2r
, ΩI = −ΩR sin 2ϕ sinh 2r ,

with ΩR = k and ΩI = 0 for the initial state.

r: squeezing parameter
ϕ: squeezing angle

5Grishchuk and Sidorov (1989)



Pure exponential inflation

The exponential evolution

a(t) = a0 exp(HIt)

for the scale factor leads to

sinh r =
aHI

2k
, cos 2ϕ = tanh r .

(largest cosmological scales: r ≈ 120, ϕ ≈ 0)



Quantum-to-classical transition and entropy

◮ Primordial fluctuations (if treated as isolated): For r → ∞
we have a semiclassical quantum state; expectation values
are indistinguishable from classical stochastic mean
values.6

◮ Highly squeezed states are extremely sensitive to
interactions – decoherence of primordial fluctuations7

Simplest case of ideal interaction (only entanglement):

ρ0(y, y
′) −→ ρξ(y, y

′) = ρ0(y, y
′) exp

(

−
ξ

2
(y − y′)2

)

ξ: Phenomenological parameter; contains details of interaction

6Polarski and Starobinsky (1996)
7Polarski, Starobinsky, C.K. (1998)



Realistic situation (decoherence condition):

ξ ≫ ΩR ≈ ke−2r

Decoherence time scale for inflation: td ∼ H−1
I

Analogy to chaotic systems: HI corresponds to the Lyapunov
parameter

Axes of the Wigner ellipse for large r:

α ≈ er , β ≈

√

ξ

k
≫ e−r

Correlation condition:
ξ

k
≪ e2r



Entropy

S = −tr(ρξ ln ρξ)
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Decoherence time and pointer states

Reconsider the master equation for localization:

dρ̂

dt
= −

i

2m~
[p̂2, ρ̂]− Λ[x̂, [x̂, ρ̂(t)]]

◮ Wigner function becomes positive after a certain time td,
independent of the initial state (Diósi and C.K. 2002)

◮ The reduced density operator ρ̂ can for t > td be decomposed in
the form

ρ̂ =

∫

dΓ P (Γ, t)|Γ〉〈Γ| , P (Γ, t) ≥ 0 ,

where |Γ〉 denotes a set of Gaussian states (op. cit.).

◮ Generalization to quadratic Hamiltonians and general Lindblad
equation8 and Non-Markovian situations9

8Brodier and Ozoro de Almeida (2004)
9Eisert (2004)



General master equation:

∂ρ̂

∂t
= −i[Ĥ, ρ̂] + L̂ρ̂L̂† −

1

2
L̂†L̂ρ̂−

1

2
ρ̂L̂†L̂

Write Lindblad operator in the form

L = (l′ + il′′) ·

(
p
y

)

,

where the real components of the ‘vectors’

l
′ =

(
λ′

µ′

)

and l
′′ =

(
λ′′

µ′′

)

contain all the information on the interaction of the system with
its environment



Results

◮ Pointer basis is given by the field-amplitude basis
◮ For modes outside the Hubble radius during inflation:

td ∼ H−1
I ln

H−1
I |λ′µ′|

a0

(as seen also in concrete models)

◮ Outside but radiation dominance:

td ∼
HIa

2
e

2(λ′µ′)2

◮ Inside Hubble radius:
td dominated by dissipation

(Lohmar, Polarski, Starobinsky, C.K. 2007)



Origin of structure from quantum fluctuations

Analogy in nuclear physics: deformed nuclei (Zeh 1967)
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