Quantum mechanics and large-scale CMB anomalies

Antony Valentini Department of Physics and Astronomy Clemson University

A. Valentini, "Inflationary cosmology as a probe of primordial quantum mechanics", Phys. Rev. D 82, 063513 (2010).

S. Colin and A. Valentini, "Mechanism for the suppression of quantum noise at large scales on expanding space", Phys. Rev. D 88, 103515 (2013).

S. Colin and A. Valentini, "Primordial quantum nonequilibrium and large-scale cosmic anomalies", arXiv:1407.8262 [astro-ph.CO].

Institute of Physics

7

$$i\frac{\partial\Psi}{\partial t} = \sum_{i=1}^{N} -\frac{1}{2m_i}\nabla_i^2\Psi + V\Psi$$

 $(\Psi = |\Psi| e^{iS})$

$$m_i \frac{d\mathbf{x}_i}{dt} = \nabla_i S$$

Scanned at the American Institute of Physics

$$i\frac{\partial\Psi}{\partial t} = \sum_{i=1}^{N} -\frac{1}{2m_i}\nabla_i^2\Psi + V\Psi$$

($\Psi = |\Psi| e^{iS}$) $m_i\frac{d\mathbf{x}_i}{dt} = \nabla_i S$

(cf. WKB, but for any wave function)

Scanned at the American Institute of Physics

$$i\frac{\partial\Psi}{\partial t} = \sum_{i=1}^{N} -\frac{1}{2m_i}\nabla_i^2\Psi + V\Psi$$

($\Psi = |\Psi| e^{iS}$) $m_i \frac{d\mathbf{x}_i}{dt} = \nabla_i S$

(cf. WKB, but for *any* wave function)

(Generalise: configuration q(t))

Scanned at the American Institute of Physics

$$i\frac{\partial\Psi}{\partial t} = \sum_{i=1}^{N} -\frac{1}{2m_i}\nabla_i^2\Psi + V\Psi$$

($\Psi = |\Psi| e^{iS}$) $m_i\frac{d\mathbf{x}_i}{dt} = \nabla_i S$

(cf. WKB, but for *any* wave function)

(Generalise: configuration q(t))

Get QM if *assume* initial Born-rule distribution, $P = |\Psi|^2$ (preserved in time by the dynamics) (shown fully by Bohm in 1952)

Example of one particle

In agreement with experiment if assume initial $P = |\Psi|^2$

Disagrees with experiment for initial $P \neq |\Psi|^2$

Quantum theory = special case of a wider physics

BUT: *experimentally* quantum dof's are always found to have the "quantum equilibrium" distribution:

Why?

X

 $P = |\Psi|^2$ (Born rule)

y

(2D box, 16 modes)

Relaxation to quantum equilibrium Equilibrium ($P = |\Psi|^2$) changes with time

Non-equilibrium ($P \neq |\Psi|^2$) relaxes to equilibrium

(Valentini and Westman, Proc. Roy. Soc. A 2005)

Superposed energies give rapidly-varying velocity fields

Relaxation to quantum equilibrium Equilibrium ($P = |\Psi|^2$) changes with time

Non-equilibrium ($P \neq |\Psi|^2$) relaxes to equilibrium

(Valentini and Westman, Proc. Roy. Soc. A 2005)

Quantify relaxation with a coarse-grained *H*-function

$$\bar{H} = \int \mathrm{d}q \,\bar{\rho} \ln(\bar{\rho}/|\psi|^2),$$

(minus the relative entropy)

Obeys the H-theorem (Valentini 1991, 1992)

 $ar{H}(t) \leqslant ar{H}(0)$ (cf. classical analogue)

assuming no initial fine-grained structure in $ho\,$ and $\left|\psi
ight|^2$

Simulations show *exponential decay* of *H*-function

Confirmed and extended by many independent simulations

The Born probability rule $P = |\Psi|^2$ is not a law of nature; it holds only because we are stuck in "equilibrium".

The Born probability rule $P = |\Psi|^2$ is not a law of nature; it holds only because we are stuck in "equilibrium".

And we are stuck in "equilibrium" because everything we can see has a long and violent astrophysical history.

The Born probability rule $P = |\Psi|^2$ is not a law of nature; it holds only because we are stuck in "equilibrium".

And we are stuck in "equilibrium" because everything we can see has a long and violent astrophysical history.

Equilibrium ($P = |\Psi|^2$) changes with time

Non-equilibrium ($P \neq |\Psi|^2$) relaxes to equilibrium

When did relaxation to equilibrium happen?

Presumably, a long time ago, in the very early universe, soon after the big bang.

Quantum noise is a relic of the big bang

Quantum noise is a relic of the big bang

CMB anisotropies are ultimately generated by early quantum noise (inflationary vacuum)

Quantum noise is a relic of the big bang

CMB anisotropies are ultimately generated by early quantum noise (inflationary vacuum)

Can test early Born rule by measuring the CMB

System with configuration q(t) and wave function(al) $\psi(q,t)$

These equations define a *pilot-wave* dynamics for any system whose Hamiltonian \hat{H} is given by a differential operator (Struyve and Valentini 2009)

where $j = j [\psi] = j(q, t)$ is the Schrödinger current

[Requires an underlying preferred foliation with time function *t*. Valid in any globally-hyperbolic spacetime (Valentini 2004)]

By construction $\rho(q, t)$ will obey

$$\frac{\partial \rho}{\partial t} + \partial_q \cdot (\rho v) = 0 \qquad \qquad \frac{dq}{dt} = v$$

and $\rho(q,t) = |\psi(q,t)|^2$ is preserved in time (Born rule).

Pilot-wave field theory on expanding space

Flat metric
$$d\tau^2 = dt^2 - a^2 d\mathbf{x}^2$$
 (scale factor $a = a(t)$)
free (minimally-coupled) massless scalar field ϕ
Hamiltonian density $\mathcal{H} = \frac{1}{2} \frac{\pi^2}{a^3} + \frac{1}{2} a (\nabla \phi)^2$
Fourier components $\phi_{\mathbf{k}} = \frac{\sqrt{V}}{(2\pi)^{3/2}} (q_{\mathbf{k}1} + iq_{\mathbf{k}2})$
Hamiltonian $H = \int d^3 \mathbf{x} \mathcal{H}$ becomes $H = \sum_{\mathbf{k}r} H_{\mathbf{k}r}$
with $H_{\mathbf{k}r} = \frac{1}{2a^3} \pi_{\mathbf{k}r}^2 + \frac{1}{2} a k^2 q_{\mathbf{k}r}^2$

Schrödinger equation for $\Psi = \Psi[q_{\mathbf{k}r}, t]$ is

$$i\frac{\partial\Psi}{\partial t} = \sum_{\mathbf{k}r} \left(-\frac{1}{2a^3} \frac{\partial^2}{\partial q_{\mathbf{k}r}^2} + \frac{1}{2}ak^2 q_{\mathbf{k}r}^2 \right) \Psi$$

and the de Broglie velocities

$$\frac{dq_{\mathbf{k}r}}{dt} = \frac{1}{a^3} \frac{\partial S}{\partial q_{\mathbf{k}r}}$$

initial distribution $P[q_{\mathbf{k}r}, t_i]$,

time evolution $P[q_{\mathbf{k}r}, t]$ will be determined by

$$\frac{\partial P}{\partial t} + \sum_{\mathbf{k}r} \frac{\partial}{\partial q_{\mathbf{k}r}} \left(P \frac{1}{a^3} \frac{\partial S}{\partial q_{\mathbf{k}r}} \right) = 0$$

Schrödinger equation for $\Psi = \Psi[q_{\mathbf{k}r}, t]$ is

$$i\frac{\partial\Psi}{\partial t} = \sum_{\mathbf{k}r} \left(-\frac{1}{2a^3} \frac{\partial^2}{\partial q_{\mathbf{k}r}^2} + \frac{1}{2}ak^2 q_{\mathbf{k}r}^2 \right) \Psi$$

and the de Broglie velocities

$$\frac{dq_{\mathbf{k}r}}{dt} = \frac{1}{a^3} \frac{\partial S}{\partial q_{\mathbf{k}r}}$$

initial distribution $P[q_{\mathbf{k}r}, t_i]$,

time evolution $P[q_{\mathbf{k}r}, t]$ will be determined by

$$\frac{\partial P}{\partial t} + \sum_{\mathbf{k}r} \frac{\partial}{\partial q_{\mathbf{k}r}} \left(P \frac{1}{a^3} \frac{\partial S}{\partial q_{\mathbf{k}r}} \right) = 0$$

decoupled mode \mathbf{k} $\Psi = \psi_{\mathbf{k}}(q_{\mathbf{k}1}, q_{\mathbf{k}2}, t) \varkappa$ drop index \mathbf{k} , wave function $\psi = \psi(q_1, q_2, t)$ initial distribution $\rho(q_1, q_2, t_i)$

THE MODEL (one mode)

$$i\frac{\partial\psi}{\partial t} = \sum_{r=1, 2} \left(-\frac{1}{2m} \partial_r^2 + \frac{1}{2} m \omega^2 q_r^2 \right) \psi$$
$$\dot{q}_r = \frac{1}{m} \operatorname{Im} \frac{\partial_r \psi}{\psi} \qquad [= (1/m) \operatorname{grad} S]$$

$$\frac{\partial \rho}{\partial t} + \sum_{r=1, 2} \partial_r \left(\rho \frac{1}{m} \operatorname{Im} \frac{\partial_r \psi}{\psi} \right) = 0$$

$$m = a^3$$
, $\omega = k/a$

STRATEGY

- Apply to a pre-inflationary era (rad.-dom. $a \propto t^{1/2}$).
- Derive large-scale "squeezing" of the Born rule for a spectator scalar field (suppression of relaxation at long wavelengths).
- Assume that similar "squeezing" of the Born rule is imprinted on the inflationary spectrum (pending a model of the transition, future work).
- NB: no relaxation during inflation itself, the Bunch-Davies dynamics is too simple (Valentini, Phys. Rev. D 2010)

Suppression of quantum noise at super-Hubble wavelengths (Colin and Valentini, Phys. Rev. D 2013)

Superposition of M=25 energy states, random initial phases

$$\psi(q_1, q_2, t_i) = \frac{1}{\sqrt{M}} \sum_{n_1=0}^{\sqrt{M}-1} \sum_{n_2=0}^{\sqrt{M}-1} e^{i\theta_{n_1n_2}} \Phi_{n_1}(q_1) \Phi_{n_2}(q_2)$$

Initial non-equilibrium = a 'ground-state' Gaussian

Mode begins outside Hubble radius, evolve until time $t_{
m enter}$

We are simply evolving this equation

$$\frac{\partial \rho}{\partial t} + \sum_{r=1, 2} \partial_r \left(\rho \frac{1}{m} \operatorname{Im} \frac{\partial_r \psi}{\psi} \right) = 0$$

forwards in time.

Right column: equilibrium initial conditions

$$\rho(q_1, q_2, t_i) = |\psi(q_1, q_2, t_i)|^2$$

Left column: nonequilibrium initial conditions $ho(q_1, q_2, t_i) \neq |\psi(q_1, q_2, t_i)|^2$ (assume subquantum width) We are simply evolving this equation

$$\frac{\partial \rho}{\partial t} + \sum_{r=1, 2} \partial_r \left(\rho \frac{1}{m} \operatorname{Im} \frac{\partial_r \psi}{\psi} \right) = 0$$

forwards in time.

Right column: equilibrium initial conditions

$$\rho(q_1, q_2, t_i) = |\psi(q_1, q_2, t_i)|^2$$

Left column: nonequilibrium initial conditions

 $\rho(q_1, q_2, t_i) \neq |\psi(q_1, q_2, t_i)|^2$ (assume subquantum width)

-2

-4

4

2

0

-2

-4

-4

-2

-4

-2

0

 $ilde{
ho}'(t_{
m ret}(t_{
m enter}))$

2

2

0

expanding space

-4

-2

2

0

-4

Write

$$\left< |\phi_{\mathbf{k}}|^2 \right> = \left< |\phi_{\mathbf{k}}|^2 \right>_{\mathrm{QT}} \xi(k)$$

The function $\xi(k)$ measures the *power deficit* at the end of pre-inflation ("squeezed" Born rule)

Write

$$\left< |\phi_{\mathbf{k}}|^2 \right> = \left< |\phi_{\mathbf{k}}|^2 \right>_{\mathrm{QT}} \xi(k)$$

The function $\xi(k)$ measures the *power deficit* at the end of pre-inflation ("squeezed" Born rule)

Expect $\xi(k)$ to be smaller (< 1) for smaller k (i.e. for longer wavelengths, less relaxation). Expect $\xi(k)$ to approach 1 for large k (i.e. for shorter wavelengths, more relaxation) Repeat the above simulation for varying k, plot the results as a function of k (S. Colin and A. Valentini, arXiv:1407.8262)

Results for M = 4, 6, 9, 12, 16, 25 modes (fixed time interval)

 $\xi(k) = \tan^{-1}(c_1(k/\pi) + c_2) - (\pi/2) + c_3$

 c_1 , c_2 and c_3 are free parameters First approximation: ignore oscillations in $\xi(k)$ We have derived a "squeezed Born rule" for a spectator scalar field at the end of a pre-inflationary era.

Assume a similar correction to the Born rule in the Bunch-Davies vacuum (pending model of transition), with the Born rule "squeezed" by the same factor $\xi(k)$.

Predicted shape for the CMB power deficit

 $\mathcal{R}_{\mathbf{k}} = -\left[\frac{H}{\dot{\phi}_0}\phi_{\mathbf{k}}\right]_{t=t_*(k)}$ (\$\phi\$ is now the inflaton perturbation)

$$\left\langle |\phi_{\mathbf{k}}|^2 \right\rangle = \left\langle |\phi_{\mathbf{k}}|^2 \right\rangle_{\mathrm{QT}} \xi(k)$$

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{P}_{\mathcal{R}}^{\mathrm{QT}}(k)\xi(k)$$

 $\xi(k) = \tan^{-1}(c_1(k/\pi) + c_2) - (\pi/2) + c_3$

(S. Colin and A. Valentini, arXiv:1407.8262)

In effect we have a two-parameter model

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{P}_{\mathcal{R}}^{\mathrm{QT}}(k)\xi(k)$$

 $\xi(k) = \tan^{-1}(c_1(k/\pi) + c_2) - (\pi/2) + c_3$

where c_1, c_2, c_3 depend on the *number of modes* and the *time interval* (in the pre-inflationary phase).

Current work (with P. Peter and S. Vitenti):

-- using COSMOMC to explore the parameter space

-- preliminary fair fit but no conclusions yet about likelihood or significance

STATISTICAL ANISOTROPY

Breaking the Born rule in the Bunch-Davies vacuum will generically *break statistical isotropy*:

-- "squeezing" factor ξ can depend on the direction of the wave vector k
 (Colin and Valentini 2013)

-- anomalous phases of $\phi_{\mathbf{k}} = \frac{\sqrt{V}}{(2\pi)^{3/2}} (q_{\mathbf{k}1} + iq_{\mathbf{k}2})$

(Valentini 2010, Colin and Valentini 2014)

STATISTICAL ANISOTROPY

Breaking the Born rule in the Bunch-Davies vacuum will generically *break statistical isotropy*:

-- "squeezing" factor ξ can depend on the direction of the wave vector k
 (Colin and Valentini 2013)

-- anomalous phases of $\phi_{\mathbf{k}} = \frac{\sqrt{V}}{(2\pi)^{3/2}} (q_{\mathbf{k}1} + iq_{\mathbf{k}2})$ (Valentini 2010, Colin and Valentini 2014)

Therefore we expect:

- -- isotropy at short wavelengths (equilibrium)
- -- anisotropy at long wavelengths (nonequilibrium)

NOTES ON OUR PREDICTIONS

-- Cannot predict lengthscale at which power deficit

$$\xi(k) = \tan^{-1}(c_1(k/\pi) + c_2) - (\pi/2) + c_3$$

will set in, since measured c_1 will be rescaled by inflationary expansion (depends on unknown number of e-folds)

 But: we can predict that anomalous phases/anisotropies are expected at comparable (slightly larger) lengthscales (S. Colin and A. Valentini, arXiv:1407.8262)

-- Superficial resemblance to data: power deficit for $l \leq 40$, anisotropy for $l \leq 10$

Planck 2013 results. XXIII. Isotropy and statistics of the CMB

pected. However, it should be clear that the evidence for some of the large-angular scale anomalies is significant indeed, yet few physically compelling models have been proposed to account for them, and none so far that provide a common origin. The dipole

We have proposed a mechanism for a common origin

All of our results come simply from the standard quantum-mechanical equation

$$\frac{\partial \rho}{\partial t} + \sum_{r=1, 2} \partial_r \left(\rho \frac{1}{m} \operatorname{Im} \frac{\partial_r \psi}{\psi} \right) = 0$$

The only change is in the initial conditions.

We assume that at the initial time the width of $ho(q_1, q_2, t_i)$ is smaller than the width of $|\psi(q_1, q_2, t_i)|^2$

This (mathematically) tiny change might provide a common origin for the observed large-scale CMB anomalies.

SUMMARY

- 1. De Broglie-Bohm formulation of quantum theory: allows non-Born rule probabilities ($P \neq |\Psi|^2$)
- 2. Relaxation to "equilibrium", $\bar{P} \rightarrow |\Psi|^2$ (cf. thermal)
- 3. Expanding space, relaxation is suppressed at long wavelengths; expect $P \neq |\Psi|^2$ on large scales
- 4. Single mechanism for both power deficit and statistical anisotropy in low-*I* region (CMB)
- 5. Inverse-tangent prediction for $\mathcal{P}_{\mathcal{R}}(k) = \mathcal{P}_{\mathcal{R}}^{QT}(k)\xi(k)$; comparison with data (in progress)