Observations of Brown Dwarfs

Kevin L. Luhman Penn State University

Image credit: Don Dixon

Outline

- Definitions
- Models of brown dwarf formation
- Mass functions
- Circumstellar Disks
- Binary properties

Outline

- Definitions
- Models of Brown Dwarf Formation
- Mass Functions
- Circumstellar Disks
- Binary properties

What makes it possible for brown dwarfs to form?

Barnard 68

What makes it possible for brown dwarfs to form?

Barnard 68

Turbulent fragmentation? e.g., Padoan & Nordlund 2004

Barnard 68

Turbulent fragmentation? e.g., Padoan & Nordlund 2004

Barnard 68

Dynamical interactions? e.g., Reipurth & Clarke 2001, Bate et al. 2002

Barnard 68

Dynamical interactions? e.g., Boss 2001, Stamatellos et al. 2007

Outline

- Definitions
- Models of Brown Dwarf Formation
- Mass functions
- Circumstellar Disks
- Binary properties

If dynamical interactions determine masses, then IMF should be broader at higher stellar densities (more BDs)

Orion

Width of IMF & abundance of BDs similar across a factor of 1000 in stellar density

IMF sensitive to spectral classifications

IMF sensitive to T_{eff} scale & models

IMF sensitive to field size

no convincing evidence of significant variations in the substellar IMF

Outline

- Definitions
- Models of Brown Dwarf Formation
- Mass Functions
- Circumstellar Disks
- Binary properties

Easiest method of detecting disks: IR imaging

Disks detected around solar-type stars with JHKL

Longer wavelengths needed for most BD disks

ISO detected a 4.5 µm excess from a young BD

A few BD disks detected at >4 μ m from ground

A few BD disks detected at >4 μ m from ground

 $\boldsymbol{\prec}$

Spitzer detected disks for smallest known BDs (~8 M_{Jup})

Spitzer detected disks in large numbers & at faint levels

BDs and low-mass stars have similar disk fractions

A new Day Astron Astronhys 50.65 106

Disk lifetimes from disk fractions vs. age

Disk lifetimes longer for lower stellar masses

UV excess emission from accreting BDs

X-shooter: UV excess + many lines + near-IR excess

X-shooter: UV excess + many lines + near-IR excess

Rigliaco et al. 2011

Accretion rates decrease steadily from stars to BDs

Far-IR and mm: BD disk masses ~ 0.001-10 M_{Jup}

Far-IR: Harvey 2012a,b; Alves de Oliveira 2013 mm: Klein 2003; Scholz 2006; Ricci 2012, 2013; Mohanty 2013; Andrews 2013

Disk mass/star mass roughly constant at ~ 0.4%

Disk mass/star mass roughly constant at ~ 0.4%

Companions that are young, wide, and <20 M_{Jup}

2M 1207B Chauvin et al. 2004

CHXR73B Luhman et al. 2006

CT Cha B Schmidt et al. 2008

DH Tau B Itoh et al. 2005

1609-2105B Lafreniere et al. 2008

Accretion detected in wide 15-30 M_{Jup} companions

ALMA non-detection: M_{disk} < 0.05 M_{Jup}

ALMA non-detection: $M_{disk}/M_{BD} < 0.3\%$

Do brown dwarfs undergo the protostellar phases like stars?

Spitzer has found possible protostellar brown dwarfs, which are not predicted by dynamical models

Spitzer image of L1014

Young et al. 2004

CO outflow in L1014

Bourke et al. 2005

See also: Huard et al. 2006, Dunham et al. 2006, 2008, André et al. 2012

Outline

- Definitions
- Models of Brown Dwarf Formation
- Mass Functions
- Circumstellar Disks
- Binary Properties

Most binary brown dwarfs have small separations (<20 AU)

But a few binary brown dwarfs are wide (>100 AU)

Young Clusters Luhman 2004

Field Burningham et al. 2010 Scholz et al. 2010

But a few binary brown dwarfs are wide (>100 AU)

Binary frequency decreases steadily with lower mass

Indicator of formation mechanism: mass ratio (M_2/M_1)

Large mass ratio \rightarrow formed like a binary star

Indicator of formation mechanism: mass ratio (M_2/M_1)

Large mass ratio \rightarrow formed like a binary star

Indicator of formation mechanism: configuration of orbits

Three small objects orbiting a much larger primary formation in a disk

Indicator of formation mechanism: configuration of orbits

Indicator of formation mechanism: configuration of orbits

Indicator of formation mechanism: configuration of orbits

Hierarchical configuration \rightarrow cloud core fragmentation

、 ,

Summary

- IMF, disks, & binarity indicate that BDs form like stars without the need for dynamical interactions
- BDs and giant planets overlap in mass and exist in similar numbers at 5 M_{jup}
- Free-floating objects are probably BDs unless there is evidence indicating formation in a disk
- Binary star formation extends down to ≤5 M_{iup}