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e The detection of GWs from EMRIs will rely crucially on an accurate computation
of the gravitational self-force: the most popular approach is to model m. as a
point source (delta function) creating a backreaction in the geometry of M, .
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e The detection of GWs from EMRIs will rely crucially on an accurate computation
of the gravitational self-force: the most popular approach is to model m. as a
point source (delta function) creating a backreaction in the geometry of M, .

e The theoretical formalism to compute the self-force has been largely established,
e.g. [S. Gralla and R. Wald, CQG 25, 205009 (2008)], but its mathematical implementation
is still under development; we use the Particle-without-Particle (PwP) method.
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e The detection of GWs from EMRIs will rely crucially on an accurate computation
of the gravitational self-force: the most popular approach is to model m. as a
point source (delta function) creating a backreaction in the geometry of M, .

e The theoretical formalism to compute the self-force has been largely established,
e.g. [S. Gralla and R. Wald, CQG 25, 205009 (2008)], but its mathematical implementation
is still under development; we use the Particle-without-Particle (PwP) method.

e A helpful testbed for the gravitational self-force is the scalar self-force—we tackle
this using the PwP method in the frequency domain.
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Scalar self-force: a simplified EMRI| model

e Setup: M. is a charged scalar particle (with charge ¢ associated to a scalar field ®)
orbiting a non-rotating black hole (of fixed—Schwarzschild—geometry, (M, g, V))
along a geodesic Y with worldline z(7) and 4-velocity 4 = 2. The EOMs are:

t1(M,g,V) (¥
u

<
m*,q\b
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e The field's spherical harmonic modes Htm (tj ’r) decouple; for wem — T@Em,
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e Setup: M. is a charged scalar particle (with charge ¢ associated to a scalar field ®)
orbiting a non-rotating black hole (of fixed—Schwarzschild—geometry, (M, g, V))
along a geodesic Y with worldline z(7) and 4-velocity 4 = 2. The EOMs are:

t1(M,qg,V
( v g, )u 4 V2@:—4WQde6($—Z(T))J
Y

rt |u-V(inau)=F=q (V) .

z
M., q [T. Quinn, PRD 62, 064029 (2000)]
e The field's spherical harmonic modes Htm (tj ’r) decouple; for wem — T@Em,

| © = Vi) i = mo(r — 1, (1)),
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e Setup: M. is a charged scalar particle (with charge ¢ associated to a scalar field ®)
orbiting a non-rotating black hole (of fixed—Schwarzschild—geometry, (M, g, V))
along a geodesic Y with worldline z(7) and 4-velocity 4 = 2. The EOMs are:
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y
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e The field's spherical harmonic modes Htm (tj ’r) decouple; for wem — T@Em,
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redefined (“tortoise”)
radial coordinate
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e The field's spherical harmonic modes Htm (tj ’r) decouple; for wﬁm — T@Em,
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Regge-Wheeler proportional to q, particle’s radial redefined (“tortoise”)
potential dependent on z location radial coordinate
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e Setup: M. is a charged scalar particle (with charge ¢ associated to a scalar field ®)
orbiting a non-rotating black hole (of fixed—Schwarzschild—geometry, (M, g, V))
along a geodesic Y with worldline z(7) and 4-velocity 4 = 2. The EOMs are:

tY1(M.qg. V
(M,g. )u Y V3ip — —4qudT6($_z(T))v
Y

rt |u-V(inau)=F=q (V) .

z
M., q [T. Quinn, PRD 62, 064029 (2000)]
e The field's spherical harmonic modes Htm (tj ’r) decouple; for wﬁm — T@Em,

(O Vi e'm =6 (). D=3 +32

.
Regge-Wheeler proportional to q, particle’s radial redefined (“tortoise”)
potential dependent on z location radial coordinate

e Once the field is solved for, its singular part must be subtracted (via “mode-sum
regularization” [L. Barack and A. Ori, PRD 61, 061502 (2000)]).
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Scalar self-force: the PwP method

e Split the computational domain into two disjoint regions. For any Q(¢,7):

Q=0Q0-6, +9+07, o] — lim (0, -0Q ).
0F = O(£(r 1)), e
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e Split the computational domain into two disjoint regions. For any Q(¢,7):

Q=0Q0-6, +9+07, o] — lim (0, -0Q ).
0F = O(£(r— 1)), I

A (0= V() 0™ = S6(r — 1, (¢)
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The general PWP method

e \We have shown [MO, CFS and ADAMS, forthcoming] that a general PwP method can
be used for solving any arbitrary m-th order linear PDE with one-dimensional
delta function (derivative) sources at M particles:

rY
M m-—1 '
Ly(z,y) =) D) fij (@) 89 (@ -, (¥)) - cee ) @
— = >
L J=0 Lp, Lpy Tpy
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The basic idea is to decompose ) = Ziﬂio 'O
(with ©° suitably defined), and prove that one can
match the LHS/RHS in Heaviside derivatives.
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for sources involving delta function products.
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e \We have shown [MO, CFS and ADAMS, forthcoming] that a general PwP method can
be used for solving any arbitrary m-th order linear PDE with one-dimensional
delta function (derivative) sources at M particles:

rY
M m-—1 '
Ly(z,y) =) D) fij (@) 89 (@ -, (¥)) - cee ) @
— = >
L J=0 Lp, Lpy Tpy

The basic idea is to decompose ) = Ziﬂio 'O
(with ©° suitably defined), and prove that one can
match the LHS/RHS in Heaviside derivatives.

o The PwP does not work for nonlinear PDEs, or = *
for sources involving delta function products.

e Example: Heat equation with constant source
supported at a sinusoidally moving particle
(using a Chebyshev-Lobatto grid in space and a
standard finite-difference scheme in time).
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Scalar self-force: frequency domain

e The PwP has already been successfully used to compute the scalar self-force in
the time domain [P. Caiiizares and CFS, PRD 79, 084020 (2009); CQG 28, 134011 (2011)].
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e Problems: computationally too slow, not adaptable to Kerr.
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e Problems: computationally too slow, not adaptable to Kerr.

e Move to the frequency domain! We have bound orbits, and thus discreet series:
+00

P (L) = et 30 e RE ().

n=—oo
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e Problems: computationally too slow, not adaptable to Kerr.

e Move to the frequency domain! We have bound orbits, and thus discreet series:
+00

Pin(t,r) =emmeet S eIt RE (1)

n=—oo

The wave-like PDEs for /4™ become
Schrédinger-like ODEs for Rfmn.

Marius Oltean, C.F. Sopuerta and A.D.A.M. Spallicci.
The particle-without-particle approach to the self-force problem

5/ 6



=

/,//—\

Scalar self-force: frequency domain

e The PwP has already been successfully used to compute the scalar self-force in
the time domain [P. Caiiizares and CFS, PRD 79, 084020 (2009); CQG 28, 134011 (2011)].

e Problems: computationally too slow, not adaptable to Kerr.

e Move to the frequency domain! We have bound orbits, and thus discreet series:

wim(tj,r) —1mw t Z e—mw tREmn( )

n=—oo

The wave-like PDEs for w become
Schrédinger-like ODEs for Ri

e We use a pseudospectral coIIocation
method to find the homogeneous
numerical solutions f% ., and len
for arbitrary BCs, then use the jump
conditions to get the true solution,
Rimn = C, R, O, + Ch R ON

mn= “lmn

compactified transition standard transition compactified
domain domain domains domain domain

Imn
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Results and work in progress...

e Thus far, using this method, the known value of the self-force has been recovered
for circular orbits (in agreement with the time-domain PwP and the results of
other methods in the literature).
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Results and work in progress...

e Thus far, using this method, the known value of the self-force has been recovered
for circular orbits (in agreement with the time-domain PwP and the results of
other methods in the literature).

e Currently, we are working on extending this to generic (eccentric) orbits.
[MO, CFS and ADAMS, also forthcoming].
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Results and work in progress...

e Thus far, using this method, the known value of the self-force has been recovered

for circular orbits (in agreement with the time-domain PwP and the results of
other methods in the literature).

e Currently, we are working on extending this to generic (eccentric) orbits.
[MO, CFS and ADAMS, also forthcoming].

e For future work, another objective is to also extend this method to rotating black
holes (Kerr).
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Thanks for your attention!



