ELECTROMAGNETIC COUNTERPARTS OF NS² MERGERS: SGRBs, Macronova, Cocoon Emission and Radio Flares Tsvi Piran The Hebrew University of Jerusalem

Kenta Hotokezaka, Ben Margalit, Odelia Teboul, Doron Grossman, Paz Beniamini, David Wanderman, Reetanjali Moharana, Ore Gottlieb, Ehud Nakar

Outline

- A side remarks on BBH mergers and Long GRBs
- Why EM counterparts?
- Rates
- GRBs excellent but beamed
- Mass ejection in NS mergers
- Evidence for mass surrounding short (non-Collapsar) GRBs.
- Consistency with r-process Nucleosynthesis.
- Short GRB cocoons and their signature the brightest quasisotropic EM counterpart.
- Jets in SNe the observational signature.

Long GRBs

Wanderman & TP 2011

Long GRBs vs BBH merges

Hotokezaka & TP 2017

- LGRB observed rate ~ 1 Gpc⁻³ yr⁻¹
- With beaming ~ 50 Gpc⁻³ yr⁻¹
- Comparable to BBH merger rate!
- LGRBs arise from the death of massive stars
- LGRBs arise in low metallicity Galaxies
 Massive BBH require low metallicity

==> LGRBs signal the formation of the BHs of the BBH

(the merger takes place, of course Gyrs later)

The expected χ_{eff} (Hotokezaka & TP 17a,b)

From a WR population that follows the LGRB rate

Why EM Counterparts?

(Kochanek & TP 1993)

Where? What? How?

Short vs. Long and Mergers vs. Collapsars

Eichler, Livio, TP, Schramm, 88 MacFadyen & Woosley 98

Collapsars

Indirect Evidence

Direct Evidence

The Rate of short GRBs (Wanderman & TP 2015)

- Current observed rate
 ~ 5 Gpc⁻³ yr⁻¹ ~0.5 Myr⁻¹
- Higher z rate is larger
- Oncertainties
 - Short delay mergers
 (need high redshift sGRBs) can be ~20 Myr!!!
 - Lowest energy (rate can be higher)
 - Beaming factor x10-70 (Very uncertain)

Short GRBs as EM counterparts

GRBs are beamed and the probability for a joint observations is rather small (about 1 in 20)

Joint GW + GRB detection – once in ~10 years

Stephan Rosswog

Stephan Rosswog

Different ejecta components

From Hotokezaka & TP 2015

Macronova* (Li & Paczynski 1997)

- Radioactive decay of the neutron rich matter.
- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

Macronova* (Li & Paczynski 1997)

- Radioactive decay of the neutron rich matter.
- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

*Also called Kilono a Hektanova

Macronova* (Li & Paczynski 1997)

- Radioactive decay of the neutron rich matter.
- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

*Also called Kilono a Hektano a Do

Decanova

Supernova

Photosphere

Photons escape

Powered by radioactive decay of ⁵⁶Ni->⁵⁶Co->⁵⁶Fe

Supernova

Photosphere

Photons escape

Powered by radioactive decay of ⁵⁶Ni->⁵⁶Co->⁵⁶Fe

Supernova

Photosphere

Photons escape

Radioactive Decay Korobkin + 13; Rosswog, Korobkin + 13

 After a second dE/dt∝t^{-1.3} (Freiburghaus+ 1999; Korobkin + 2013)

Macronova emission

Macronova emission

Energy Generation Hotokezaka, Sari & TP + 16

GF N+n

Ve

N+|

$$\begin{split} t_f &= \frac{2\pi^3}{G_F^2} \frac{\hbar^7}{m_e^5 c^4} \approx 10^4 sec \\ \dot{E} &= \epsilon_e \frac{m_e c^2}{t_f} \left(\frac{t}{t_F}\right)^{-\alpha} \\ \frac{1}{\tau} \propto \frac{d}{dE} \int d^3 p_e \int d^3 p_\nu \\ \swarrow & \bigstar \\ E^3 \text{ or } E^{3/2} \qquad E^3 \\ \text{Relativistic} \quad \frac{1}{\tau} \propto E^5 \qquad \rightarrow \alpha = 6/5 \\ \text{Newtonian} \quad \frac{1}{\tau} \propto E^{7/2} \qquad \rightarrow \alpha = 9/7 \end{split}$$

Macronova

Photons escape from this region

Macronova

Photons escape from this region

τ=C/v

Increase as we see a large fraction of the matter. Decrease due to radioactive decay time

Macronova

luminosity

Peak time and peak luminosity

Diffusion time = expansion time <=> Mass of the "emitting region"

Luminosity

$$L(t) = \dot{\epsilon}(t)m(v) = \dot{\epsilon}_0(t/t_0)^{-\alpha}m(v)$$

Radioactive heating rate

The peak time

$$\tilde{t}_p \approx \sqrt{\frac{\kappa m_{\rm ej}}{4\pi c \bar{v}}} = 4.9 \,\mathrm{days} \,\left(\frac{\kappa_{10} m_{\rm ej,-2}}{\bar{v}_{-1}}\right)^{1/2}$$

The peak luminosity

$$\tilde{L}_{p} \approx \dot{\epsilon}_{0} m_{\rm ej} \left(\frac{\kappa m_{\rm ej}}{4\pi c \bar{v} t_{0}^{2}}\right)^{-\alpha/2} = 2.5 \times 10^{40} \,\frac{\rm erg}{\rm s} \,\left(\frac{\bar{v}_{-1}}{\kappa_{10}}\right)^{\alpha/2} m_{\rm ej,-2}^{1-\alpha/2}$$

Macronova

 $\varkappa = 10 \text{ cm}^2/\text{gm}$ $\Rightarrow t_{\text{max}} \propto \chi^{1/2}$ => longer $\bigtriangleup L_{\text{max}} \propto \chi^{-0.65}$ => weaker $\intercal T \propto \chi^{-0.4}$ => redder

 $\varkappa = 10 \text{ cm}^2/\text{gm}$ $\bigstar t_{\text{max}} \propto \chi^{1/2}$ => longer
 $\bigsqcup L_{\text{max}} \propto \chi^{-0.65}$ => weaker
 $\overbrace T \propto \chi^{-0.4}$ => redder

 $\varkappa = 10 \text{ cm}^2/\text{gm}$ $\ddagger t_{\text{max}} \propto \chi^{1/2}$ => longer
 $\bigsqcup L_{\text{max}} \propto \chi^{-0.65}$ => weaker
 $\boxed{T \propto \chi^{-0.4}}$ => redder

 $\varkappa = 10 \text{ cm}^2/\text{gm}$ $\ddagger t_{\text{max}} \propto \chi^{1/2}$ => longer
 $\bigsqcup L_{\text{max}} \propto \chi^{-0.65}$ => weaker
 $\boxed{T \propto \chi^{-0.4}}$ => redder

 $\varkappa = 10 \text{ cm}^2/\text{gm}$ $\Rightarrow t_{\text{max}} \propto \varkappa^{1/2}$ => longer $L_{\text{max}} \propto \varkappa^{-0.65}$ => weaker $T \propto \varkappa^{-0.4}$ => redder

uv or optical -> IR

Bolometric light curves

neutrino driven winds

Different Y_e, different nucleosynthsis, different opacity: $\chi = 1 \text{cm}^2/\text{gm}$

neutrino driven winds lightcurves

Combined macronova signal

The short Gamma-Ray Burst (GRB) 130603B

GRB 130603B Z=0.356 <=> 1 Gpc = 3 Glyr

GRB 130603B

A short burst

4200

At 15:49:14 UT, the Swift Burst Alert Telescope (BAT) triggered and located GRB 130603B (trigger=557310). Swift slewed immediately to the burst.

The BAT on-board calculated location is

RA, Dec 172.209, +17.045 which is

 $RA(J2000) = 11h \ 28m \ 50s$

Dec(J2000) = +17d 02' 42"

with an uncertainty of 3 arcmin (radius, 90% containment, including systematic uncertainty).

The BAT light curve showed a single spike structure with a duration

of about 0.4 sec. The peak count rate was 60000 counts/sec (15-350 keV), at ~0 sec after the trigger.

z=0.356 <=> 1 Gpc = 3 Glyr

GRB130603B @ 9 days AB (6.6 days at the source frame)

HST image (Tanvir + 13)

GRB 130603B

Macronova?

$0.01\text{--}0.05~M_{\odot}$

Tanvir + 13 (see also Berger + 13) GRB 130603B

GRB 060614

Need M~0.1M. => BH-NS ? Yang et al., 2015

GRB 050709

Need M~0.05M. => BH-NS ?

Jin et al., 2016

Are Macronova Frequent?

- There are 3 (6) possible (nearby) historical candidates with a good enough data
- In 3/3 (3/6) there are possible Macronovae

r-process consistency

<u>If</u> correct

000

Confirmation of the GRB neutron star merger model (Eichler, Livio, TP & Schramm 1989).

Confirmation of the Li-Paczynski Macronova.

Confirmation that compact binary mergers are the source of heavy (A>130) r-process material (Gold, Silver, Platinum, Plotonium, Uranium etc...).

Radio Flares (Nakar & Piran 2011)

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.

Radio Flares (Nakar & Piran 2011)

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.

Supernova Months Supernova remnant a few x 10⁴ years

Macronova Weeks Radio Flare months – years

Radio Flare light curves

NS², 1.4GHz, D=200Mpc, n=0.1cm⁻³

BHNS, 1.4GHz, D=300Mpc, n=0.1cm⁻³

Nakar, TP 2011; TP+13; Hótokezata + TP, 15; Hotokezaka et al., 16 A flare from GRB 130603B should be detected by the EVLA (if the external density is not too small)

A flare from GRB 130603B should be detected by the EVLA (if the external density is not too small)

A flare from GRB 130603B should be detected by the EVLA (if the external density is not too small)

The Cocoon signature

From Hotokezaka & TP 2015

Jet Propagation

(MacFayden & Woosley 1998; Aloy+ 1999; Matzner 2003; Lazzati and Begelman,05; Bromberg + 2011....)

Jet Propagation

(MacFayden & Woosley 1998; Aloy+ 1999; Matzner 2003; Lazzati and Begelman,05; Bromberg + 2011....)

3D Simulations by Ore Gottlieb using Pluto. Breakout time ~0.2 sec Ejecta from the simulations of Nakagura et al 2014

3D Simulations by Ore Gottlieb using Pluto. Breakout time ~0.2 sec Ejecta from the simulations of Nakagura et al 2014

The "short" plateau Moharana & TP 17 <u>arXiv170502598</u>

There are mergers in which the jet don't break out!

While propagating in the ejecta the jet dissipates its energy (~10⁴⁹ ergs) in a cocoon

Can we see this energy ?

Yes

The cocon breakout arXiv170510797G Ore Goettlib, Ehud Nakar & TP 17

Cooling + Radioactivity => short lived bright signal

The brightest counterpart

Bolometric Luminosity

Temperature

g Magnitude

Multiwavelengths

cooling emission cocoon macronova

g band light curve

=> Observational strategy: look for a rapid (hour) bright blue signal and followup in IR (Grossman, Korobkin, Rosswog, TP, 14)

Cocoon Afterglow Teboul & TP 17

 The relativistic part of the cocoon's ejecta may lead to an afterglow emission due to the interaction of the ejecta with the surrounding matter.

Detectability

aLIGO will provide a 100 deg² error box

- The Dynamical ejecta IR signal
 - @ 300 Mpc -> M_H≈23.5-24.5 (-1 at optimal viewing angle) on a time scale of a few days
 - Rapid follow up is impossible in the IR.
- neutrino driven wind UV/Blue signal
 - @ 300 Mpc -> $M_H \approx 23.7$ -24.2 on a time scale of a < day
 - Possible with SHC on subaru or continous cover with ZTF or equivalent or LSST
- Cocoon signature
 - @ 300 Mpc -> $M_H \approx 22-23$ on a time scale of an hour
 - Possible with SHC on subaru or continous cover with ZTF or equivalent or LSST

Detection strategy

- Deep search in the optical using HSC or multiple exposures on a very wide field telescope (ZTF).
- With detection deep localized search in the near IR

 Blind searches in Optical and clearly in IR are hopeless (a few single event detections per year with the LSST).

Conclusions

- Short GRBs are the best EM counterparts but the rate of a sGRB+GW signal is small ~ 1 in 10 years.
- NS² ejecta produces a weak "supernova" first a supernova like optical/IR signal (Macronova/kilonova) and then a SNR like Radio Flare.
- Consistently of numerous observations pointing out to NS² mergers as sources of r-process.
- The GRB jet deposits~10⁴⁹ ergs in a cocoon.
- Cocoon cooling emission + radioactivity
 => a bright (22-23 mag) blue short (hours) signal.
- Observational strategy: look for a rapid bright blue signal and follow up in IR.

1) Physical Processes in Astronomical Transients Jerusalem winter school 27/12/2017 - 4/1/2018

2) Several **Postdoc** positions under the **ERC** grant **TReX**

A remark about binary neutron stars TP & Shaviv 2005; Dall'Osso, TP & Shaviv 2013, Beniamini & TP 2015; Beniamini, Hotokezaka & TP 16

★Most observed Galactic binary neutron stars have almost circular orbits and a low proper motion →Very low mass ejection (<0.1 M_{sun} for J0737-3039B) →NOT formed in a regular SNe This is not taken into account in most (e.g. Cote +) Pop synthesis calculations.

GBM counterpart (p=0.002)

The BHBH (GW150914) EM counterpart problem

>10⁴⁹ ergs => > 10⁻⁵ m_{sun}
Life time of a BHBH binary ~1 Gyr (from minimal separation)
Cannot keep so much mass from formation for 1 Gyr.
Need to link (in time) the mass

accumulated to the merger.

A short distance capture + matter injection => A 3 body interaction in a globular cluster?

=> Maybe possible but extremely rare