Primordial black holes as dark matter: formation and astrophysical consequences

Alexander Kusenko
(UCLA and Kavli IPMU)
P³ (Particle Physics in Paris) seminar, May 26 2020

Supported by U.S. DOE Office of Science (HEP), and WPI, Japan
Primordial black holes

- Black holes can be produced in the early universe [Zeldovich, Novikov (1967); Hawking (1971), Carr]
- Can account for dark matter. The only dark matter candidate that is not necessarily made of new particles. (Although new physics usually needed to produce PBHs)
- Can seed supermassive black holes
- Can probably contribute to the LIGO signal
- Can account for all or part of r-process nucleosynthesis
- ...and 511 keV line from the Galactic Center
Formation scenarios

- Inflation [Carr; Garcia-Bellido, Linde et al. ...] Spectrum of primordial density perturbations may have an extra power on some scale \rightarrow PBH
- Violent events, such as phase transitions, domain walls collapse.
- Matter-dominated phase is an opportunity [Zeldovich, Novikov; Khlopov, Polnarev, Zeldovich; Carr, Tenkanen; Georg, Melcher, Watson]
- Scalar field fragmentation: matter-dominated epoch with relatively few extremely massive particles per horizon \Rightarrow fluctuations are large
 [Cotner, AK; Fuller, AK, Takhistov; Cotner, AK, Takhistov, Vitagliano, Sasaki]
- Multiverse from inflation producing baby universes collapsing to PBH: extended mass function affords new ways to detect [Vilenkin et al., AK et al.]
Experimental constraints
HSC search for PBH [Takada et al.]
A candidate microlensing event Subaru HSC obs. of M31

Consistent with PBH mass $\sim 10^{-7} \, M_\odot$

Need follow-up observations

Figure 13. One remaining candidate that passed all the selection criteria of microlensing event. The images in the upper plot show the postage-stamped images around the candidate as in Fig. 7: the reference image, the target image, the difference image and the residual image after subtracting the best-fit PSF image, respectively. The lower panel shows that the best-fit microlensing model gives a fairly good fitting to the measured light curve.
Early Universe

- **Inflation**
 - $p<0$
 - Origin of primordial perturbations

- **Radiation dominated**
 - $p=(\frac{1}{3})\rho$
 - $\rho \propto a^{-4}$
 - Structures don’t grow

- **Matter dominated**
 - $p=0$
 - $\rho \propto a^{-3}$
 - Structures grow

- **Modern era**
 - $p<0$
 - (Dark energy dominated)
Scalar fields

Simplest spin-zero object

Examples:

- Higgs field that gives an electron and other particles masses
- Supersymmetry - many scalar fields, including 100+ flat directions [Gherghetta et al., ’95]
Scalar fields in de Sitter space during inflation

A scalar with a small mass develops a VEV
[Bunch, Davies; Affleck, Dine]
Scalar fields in de Sitter space during inflation

- If \(m=0, V=0 \), the field performs random walk:
- Massive, non-interacting field:
- Potential \(V(\phi) = \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4 \)

\[
\langle \phi^2 \rangle = \frac{H^3}{4\pi^2 t}
\]

\[
\langle \phi^2 \rangle = \frac{3H^4}{8\pi^2 m^2}
\]

\[
H \partial_t \langle \phi^2 \rangle = \frac{H^4}{4\pi^2} - \frac{2m^2}{3} \langle \phi^2 \rangle - 2\lambda \langle \phi^2 \rangle^2
\]

\[
\langle \phi^2 \rangle \rightarrow \frac{H^2}{\pi \sqrt{8\lambda}} \quad \text{for} \quad m = 0
\]
Scalar fields in de Sitter space during inflation

A scalar with a small mass develops a VEV
[Bunch, Davies; Affleck, Dine]
Scalar fields: an instability

Gravitational instability can occur due to the attractive force of gravity.

Similar instability can occur due to scalar self-interaction which is attractive:

\[U(\phi) \supset \lambda_3 \phi^3 \quad \text{or} \quad \lambda_\chi \phi \phi \phi \phi^\dagger \phi \]
Scalar fields: an instability (Q-balls)

homogeneous solution \(\varphi(x, t) = \varphi(t) \equiv R(t)e^{i\Omega(t)} \)

\[
\delta R, \delta \Omega \propto e^{S(t) - ik\vec{x}}
\]

\[
\ddot{\Omega} + 3H(\dot{\Omega}) - \frac{1}{a^2(t)} \Delta(\delta \Omega) + \frac{2\dot{R}}{R}(\dot{\delta} \Omega) + \frac{2\dot{\Omega}}{R}(\dot{\delta} R) - \frac{2\dot{R}\dot{\Omega}}{R^2}\delta R = 0,
\]

\[
\ddot{R} + 3H(\dot{R}) - \frac{1}{a^2(t)} \Delta(\delta R) - 2R\dot{\Omega}(\dot{\delta} \Omega) + U''\delta R - \dot{\Omega}^2\delta R = 0.
\]

\[(\dot{\Omega}^2 - U''(R)) > 0 \Rightarrow \text{growing modes: } 0 < k < k_{\text{max}} \]

Also of interest: oscillons

\[k_{\text{max}}(t) = a(t)\sqrt{\dot{\Omega}^2 - U''(R)}\]

AK, Shaposhnikov, hep-ph/9709492
Numerical simulations of scalar field fragmentation

[Multamaki].

[Kasuya, Kawasaki]
Q-balls: the min of energy for a fixed U(1) global number

Complex scalar field with a U(1) symmetry (e.g. B, L, B-L in SUSY)

U(1):

\[\phi \rightarrow e^{i\theta} \phi. \]

Ground state with Q≠0?

vacuum: \[\phi = 0 \]

conserved charge: \[Q = \frac{1}{2\pi} \int \left(\phi^\dagger \overset{\to}{\partial}_0 \phi \right) d^3x \]

\[Q \neq 0 \Rightarrow \phi \neq 0 \text{ in some finite domain} \]
\[\Rightarrow \text{Q-ball} \] [Rosen; Friedberg, Lee, Sirlin; Coleman]

Q-balls exist if

\[U(\phi) / \phi^2 = \min, \text{ for } \phi = \phi_0 > 0 \]
Q-balls in a flat potential (as in SUSY)

Q=global charge (e.g. baryon number) = number of particles

\[\text{Mass} \propto Q^{3/4} \Rightarrow \]

\((\text{Mass per particle}) \propto (Q^{3/4}/Q) = Q^{-1/4} = \text{decreases for large } Q \Rightarrow \)

- min of energy
- stick together
- size fluctuations \(\Rightarrow \)

mass fluctuations
Early Universe

Inflation

origin of primordial perturbations

radiation dominated

\[p = \left(\frac{1}{3}\right) \rho \]
\[\rho \propto a^{-4} \]
structures don't grow

matter dominated

\[p = 0 \]
\[\rho \propto a^{-3} \]
structures grow

modern era (dark energy dominated)
Scalar lump (Q-ball) formation can lead to PBHs

Intermittent matter dominated epoch in the middle of radiation dominated era

Few big lumps create large fluctuations

Matter-dominated phase has been considered before, but

- usually, fluctuations are not big enough
- non-linear evolution cannot be reliably invoked: virialized systems do not make black holes
- in linear regime, PBH formation is suppressed in the absence of large fluctuations

Small number of large “particles” ⇒ large fluctuations, enough PBH for DM

Must account for suppression from non-spherical configurations, etc. -- still OK.
Many particles \Rightarrow only small Poisson fluctuations
FEW GIANT PARTICLES ⇒ LARGE POISSON FLUCTUATIONS
Scalar lump (oscillon) formation can lead to PBHs

Intermittent matter dominated epoch immediately after inflation

[Cotner, AK, Takhistov, Phys.Rev. D98 (2018), 083513]
PBH from Supersymmetry: natural mass range

Flat directions lifted by SUSY breaking terms, which determine the scale of fragmentation.

\[M_{\text{hor}} \sim r_f^{-1} \left(\frac{M_{\text{Planck}}^3}{M_{\text{SUSY}}^2} \right) \sim 10^{23} g \left(\frac{100 \text{ TeV}}{M_{\text{SUSY}}} \right)^2 \]

\[M_{\text{PBH}} \sim r_f^{-1} \times 10^{22} g \left(\frac{100 \text{ TeV}}{M_{\text{SUSY}}} \right)^2 \]

\[10^{17} \text{ g} \lesssim M_{\text{PBH}} \lesssim 10^{22} \text{ g} \]

Cotner, AK, Sasaki, Takhistov, JCAP 1910 (2019) 077]
Scalar lump formation \Rightarrow PBHs with different masses

$\Omega_{\text{PBH}} = 1, \quad 0.2, \quad 0.001$

Cotner, AK, Sasaki, Takhistov, JCAP 1910 (2019) 077]
Comparison with PBH from inflationary perturbations

<table>
<thead>
<tr>
<th>PBH Production Scenario</th>
<th>Inflationary Perturbations (common mechanism)</th>
<th>Field Fragmentation (our mechanism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source and type of large (CMB-scale) perturbations</td>
<td>inflaton fluctuations, curvature</td>
<td>inflaton fluctuations, curvature</td>
</tr>
<tr>
<td>Source and type of small (PBH-scale) perturbations</td>
<td>inflaton fluctuations, curvature</td>
<td>stochastic field fragmentation, isocurvature (fragment-lumps)</td>
</tr>
<tr>
<td>PBH source field</td>
<td>inflaton</td>
<td>inflaton or spectator field</td>
</tr>
<tr>
<td>Required potential condition</td>
<td>inflaton potential fine tuning</td>
<td>no new restrictions on inflaton potential, scalar field potential shallower than quadratic (attractive self-interactions)</td>
</tr>
<tr>
<td>PBH formation era (t_{PBH}) and type</td>
<td>$t_{BBN} \gtrsim t_{PBH} \gtrsim t_{reh}$, after reheating, radiation-dominated era</td>
<td>$t_{BBN} \gtrsim t_{PBH} \gtrsim t_{inf}$, before or after reheating, temporary matter-dominated era</td>
</tr>
<tr>
<td>PBH size (r_{BH}) vs. horizon (r_H) at formation</td>
<td>$r_{BH} \sim r_H \sim H^{-1}$</td>
<td>$r_{BH} \ll r_H \sim H^{-1}$</td>
</tr>
<tr>
<td>PBH spin (a)</td>
<td>$a \sim 0$</td>
<td>$a \sim O(1)$ possible</td>
</tr>
</tbody>
</table>
Another mechanism: inflationary multiverse

Tail of the mass the function $\propto M^{-1/2}$, accessible to HSC

PBH and neutron stars

- Neutron stars can capture PBH, which consume and destroy them from the inside.
- Capture probability high enough in DM rich environments, e.g. Galactic Center
- Missing pulsar problem...
 [e.g. Dexter, O'Leary, arXiv:1310.7022]
- What happens if NSs really are systematically destroyed by PBH?

Neutron star destruction by black holes

⇒ r-process nucleosynthesis, 511 keV, FRB

MSP spun up by an accreting PBH

- MSP with a BH inside, spinning near mass shedding limit: elongated spheroid
- Rigid rotator: viscosity sufficient even without magnetic fields [Kouvaris, Tinyakov]; more so if magnetic field flux tubes are considered
- Accretion leads to a decrease in the radius, increase in the angular velocity (by angular momentum conservation)
- Equatorial regions gain speed in excess of escape velocity: ejection of cold neutron matter

Numerical simulations by David Radice (Princeton)

Preliminary results by David Radice (Princeton U. and IAS)

Initial PBH mass for this simulation:

\[M_{\text{PBH}} = 0.03 \, M_\odot \]

(preliminary results)
r-process nucleosynthesis: site unknown

- s-process cannot produce peaks of heavy elements
- Observations well described by r-process
- Neutron rich environment needed
- Site? SNe? NS-NS collisions?..
r-process nucleosynthesis: site unknown

- SN? Problematic: neutrinos
- NS mergers? Can account for all r-process?
r-process material: observations

Milky Way (total): \(M \sim 10^4 \, M_\odot\)

Ultra Faint Dwarfs (UFD): most of UFDs show no enhancement of r-process abundance.

However, **Reticulum II** shows an enhancement by factor \(10^2-10^3!\)

“Rare event” consistent with the UFD data: one in ten shows r-process material [Ji, Frebel et al. Nature, 2016]
NS disruptions by PBHs

- Centrifugal ejection of cold neutron-rich material ($\sim 0.1 \, M_\odot$) MW: $M \sim 10^4 \, M_\odot$ ✔

- UFD: a rare event, only one in ten UFDs could host it in 10 Gyr ✔

- Globular clusters: low/average DM density, but high density of millisecond pulsars. Rates OK. ✔

[Fuller, AK, Takhistov, PRL 119 (2017) 061101]
also, a Viewpoint PRL article by Hans-Thomas Janka
NS disruptions by PBHs

- Weak/different GW signal
- No significant neutrino emission
- Fast Radio Bursts
- Kilonova type event **without** a GW counterpart, but with a possible coincident FRB
- 511 keV line

Origin of positrons unknown. Need to produce 10^{50} positrons per year. Positrons must be produced with energies below 3 MeV to annihilate at rest. [Beacom, Yuksel ‘08]

Cold, neutron-rich material ejected in PBH-NS events is heated by β-decay and fission to $T\sim0.1$ MeV

\[\rightarrow \text{generate } 10^{50} \text{ e}^+/\text{yr} \text{ for the rates needed to explain r-process nucleosynthesis.} \]

Positrons are non-relativistic.

\[\Gamma(e^+e^- \rightarrow \gamma\gamma) \sim 10^{50}\text{yr}^{-1} \]
Fast Radio Bursts (FRB)

Origin unknown. One repeater, others: non-repeaters. $\tau \sim$ ms.

PBH - NS events: final stages dynamical time scale $\tau \sim$ ms.

NS magnetic field energy available for release: $\sim 10^{41}$ erg

Consistent with observed FRB fluence.

Massive rearrangement of magnetic fields at the end of the NS life, on the time scale \simms produces an FRB.

(Of course, there are probably multiple sources of FRBs.)
GW detectors can discover small PBH...

PBH + NS

↓

BH of 1-2 \(M_\odot \)

...if it detects mergers of 1-2 \(M_\odot \) black holes (not expected from evolution of stars)

[Takhiriev, arXiv:1707.05849]
Conclusion

- Simple formation mechanism in the early universe: PBH from a scalar field fragmentation, PBH from vacuum bubbles
- PBH with masses $10^{-14} - 10^{-10} \, M_{\odot}$, motivated by 1-100 TeV scale supersymmetry, can make up 100% (or less) of dark matter
- PBH is a generic dark matter candidate in SUSY
- If >10% of dark matter is PBH, they can contribute to r-process nucleosynthesis
- Signatures of PBH:
 - Kilonova without a GW counterpart, or with a weak/unusual GW signature
 - An unexpected population of 1-2 M$_{\odot}$ black holes (GW)
 - Galactic positrons, FRB, etc.
 - Microlensing (HSC) can detect the tail of DM mass function.